
WORKSHOP ON RATIONAL POINTS AND BRAUER-MANIN OBSTRUCTION

OBSTRUCTION GUYS

ABSTRACT. Here we present an extended version of the notes taken by the seminars organized during the
winter semester of 2015. The main goal is to provide a quick introduction to the theory of Brauer-Manin
Obstructions (following the book of Skorobogatov and some more recent works). We thank Professor Harari
for his support and his active participation in this exciting workshop.
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1. TALK 1: A FIRST GLANCE, PROFESSOR HARARI

Notes taken by Gregorio Baldi
The aim of the lecture is to define Hasse principle, weak approximation and give a few easy examples. Then
we recall some basic stuff on the Brauer group, finally the definition on Brauer-Manin obstruction, with
more examples, results and conjectures.

The prerequisites should be:

a) some basic algebraic geometry (definition of a scheme, first properties of morphisms [Har77])
b) basics in étale cohomology ([Tam06])
c) some global class field theory, say the main results in [SN86]

1.1. Galois and Étale Cohomology.

1.1.1. Group Cohomology. Let G be a finite group. Let A be a G-module (an abelian group with an action
of G, given by an automorphism of G). Then one can define, as usual, the cohomology groups

H i (G,A) , i ≥ 0

1.1.2. Modified/Tate Group. One can also have

Ĥ0 (G,A) = AG/NGA, NG(x) =
∑
g∈G

gx

And can also define

Ĥ i (G,A) , i ≤ 0

using homology instead of cohomology.

1.1.3. Restriction-inflation. If H is a normal subgroup there is a spectral sequence (Hochschild-Serre)

Hp (G/H,Hq(H,A))⇒ Hp+q(G,A)

From the five degree exact sequence we have

0→ H1(G/H,AH)
inf−−→ H1(G,A)

res−−→ H1(H,A)

Under the assumption

H i(H,A) = 0 for 1 ≤ i ≤ q − 1

one has also the exactness of

0→ Hq(G/H,AH)
inf−−→ Hq(G,A)

res−−→ Hq(H,A)

Reference 1.1.1. [Har12]

We list here some useful results.

Proposition 1.1.2. Let G a finite group, for any G-module A the groups H i(G,A) are of card(G)-torsion.
Moreover, if A is an abelian group of finite type, then H i(G,A) are finite.

Corollary 1.1.3. Let G be a finite group and A a G-module which is uniquely divisible, then H i(G,A) are
zero.

Example 1.1.4. Those results, together with the long exact sequence induced by

0→ Z→ Q→ Q/Z→ 0

give us H2(G,Z) ∼= H1(G,Q/Z) and H1(G,Z) = 0.
3



1.1.4. Profinite Groups. Let k be a field, L a finite Galois extension and G its Galois Group acting on L∗.
We have H0(G,L∗) = (L∗)G = k∗.

Recall Hilbert’s 90: H1(G,L∗) = 0. But in general H i(G,L∗) for i ≥ 2 is not zero (!!Brauer Group).
A group G is called profinite if G = lim←− Gi (which is contained in the product of the Gi’s) i.e. the

projective limit of finite group. One can give also a purely topological description: G is profinte iff it is a
compact, in the french sense, completely disconnected topological group.

Example 1.1.5. LetK be a separable extension of k. The main example isG = Gal(K, k) := lim←−Gal(L, k)

where the limit runs over finite extension of k contained in K.

LetA be a discreteGmodule (i.e. there is an action ofG onA and every stabilizer is open). IfG = lim←−Gi
this means that for every x ∈ A there exists L/k finite Galois such that the action of G on x factorizes
thorough Gal(L, k).

Example 1.1.6. Let n be an integer coprime with char k. Actions of G = Gal(K, k) on k
∗
, on µn = {x ∈

k
∗
, xn = 1} or the trivial action on Z/n.

If a profinite group G acts on A, define

i ≥ 0 H i(G,A) = lim←−
UCG,open

H i(G/U,AU )

Notice that G profinite implies G/U finite (by compactness). It is possible to give a description in terms
cocycles: you have to take continuous cocycle w.r.t. profinite topology.

1.1.5. Galois Case. Consider the absolute Galois group of k, which will be denoted G (or Gk, or even Γk
in what follows), acting on A, then

i ≥ 0 H i(G,A) = lim←−
k⊆L

H i(Gal(L, k), AGal(L,k))

Example 1.1.7. H0(G, k
∗
) = k∗, H1(G, k

∗
) = 0, H2(G, k

∗
) = Br (k).

Example 1.1.8. Some examples of Brauer groups: Br (R) = Z/2 , Br (Qp) = Q/Z. Here one needs some
local class field theory.

1.1.6. Étale Cohomology. It is an extension of Galois cohomology in some sense which will be explained
in the next talk.

Setting: let X be a scheme, F an étale sheaf of abelian groups over Xet. Then you can define étale
cohomology groups

H i(X,F)

Special case: F represented by a smooth commutative group scheme over X , say G; then we denote it with
H i(X,GX) = H i(X,G×k X). One of the main example is given by the linear groups, i.e. the subgroups
of GLn. The most important case will be the one of groups scheme coming from k.

Reference 1.1.9. [Mil13], [Tam06]

1.1.7. Non abelian Cohomology. If Gk = Gal(k, k) act on a group A, not necessary commutative we have

H0(Gk, A) = AGk

and we can define H1(Gk, A) using cocyles. It will be not a group but just a pointed set. For any exact
sequence of Gk modules

1→ A→ B → C → 1

induces a “long but not so long” exact sequence of pointed set:

1→ AGk → BGk → CGk → H1(Gk, A)→ H1(Gk, B)→ H1(Gk, C)

Achtung. Notice that having trivial kernel does not imply the injectivity of the map. (To do this one has to
twist!)
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If A is contained in the center of B then it is possible to continue the exact sequence with an arrow to
H2(Gk, A). But, even if C is abelian then the map H1(Gk, C)→ H2(Gk, A) is not a morphism of group.

Reference 1.1.10. [Ser73]

In the next talk will be given the same construction with the étale cohomology, in particular we will
interpret the pointed set H1(X,G) for G a smooth group scheme. (When G is not smooth one use the fppf
site). The idea is the following: Let X be a scheme, GX a smooth group scheme over X (G defined over

k), then H1(X,G) classifies the GX -torsor over G. Intuitively a torsor is Y
f−→ X where

• f is a faithfully flat.
• and the action of GX on Y is compatible with f .
• Naive definition in the fibers the action is simply transitive, i.e. if x ∈ X(k), exists a unique
g ∈ G(k) gy1 = y2 for any y1, y2 ∈ Xx(k). Notice that we do not take x ∈ X(k), it could be
empty.

Reference 1.1.11. Skorobogatov [Sko01], first chapter.

1.2. Picard Group, Brauer Group. Let X be a noetherian regular integral scheme (e.g. a smooth variety
over a field). Under this assumptions we have

Pic(X) = group of Weil’s divisors = Cartier divisors/ Sym

And we always have the “Hilbert’s 90”

Pic(X) = H1(Xet,Gm) = H1(Xzar,O
∗
X)

If X is a proper and smooth variety over a filed of characteristic 0 one can define a subgroup of Pic(X):
Pic0(X)=divisors algebraically equivalent to 0.

Example 1.2.1. If X is a smooth and proper curve then Pic0(X) = {D ∈ Pic(X), deg(D) = 0}. Where

deg

 ∑
x, closed

mxx

 =
∑
x

mx[k(x) : k]

Proposition 1.2.2. Let X be a proper, smooth scheme over k. There exists an exact sequence

0→ Pic0(X)→ Pic(X)→ NS(X)→ 0

a) NS(X) is finitely generated (and isomorphic to Z ifX is a curve, here the last map is just the degree)
b) If L is a field extension of k then Pic0(XL) = A(L). (L big enough, to have a rational point) Where
A is the Picard variety associated to X: it is an abelian variety of dimension equal to the dimension
dim(H1(X,OX))

Achtung. If char(k) 6= 0 this is a bit more complicated.

Reference 1.2.3. More on abelian varieties will be discussed in one of the following talks.

Theorem 1.2.4. Let X be an abelian variety, then NS(X) is torsion free.

This is not true in general, e.g. for Enriques surfaces.

Definition 1.2.5. Let X be a regular and integral scheme. Its Brauer Group is Br (X) = H2(X,Gm).

Remark 1.2.6. This is the cohomological Brauer group. Another definition with “Azumaya algebras” can
be given, it is smaller. A result of Gabber says that if X is noetherian, quasi projective variety, then both
definition are the same. But we will work just with the cohomological one. For more details see [dJ11].

Theorem 1.2.7. Let X be integral and regular, Br (X) ⊂ Br (k(X)). In particular it is a torsion group
(Galois cohomology).

Example 1.2.8. Let k be a field of char 0. It is not hard to prove that Br (Pnk) ∼= Br k. Moreover one can
also prove that Br (Ank) is isomorphic to Br (k). For Pnk see Proposition 6.9.9. of [Poo11], and Theorem 7.5
of [AG60] for Ank . It is a nice exercise to deduce the result for Pn from the affine case.
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We list some properties.

Reference 1.2.9. [Gro68]

• Let X,Y are projective and smooth varieties over a field k (of zero char). If X ∼= Y then Br (X) =
Br (Y ).
• Exact sequence for X smooth k-variety with n 6= 0 mod char(k):

0→ µn → Gm
·n−→ Gm → 0

gives us
0→ Pic(X)/n→ H2(X,µn)→n Br (X)→ 0

• H.S. Spectral sequence:

Hp(Gk, H
q(Xk,Gm))⇒ Hp+q(X,Gm)

Remark 1.2.10. “Azumaya Brauer Group” corresponds to H1(X,PGLn) moving n.

1.3. Obstructions. Notation: Let k be a number field. We let Ωk denote the set of its places. The comple-
tion of k at a place v is denoted kv.

Definition 1.3.1 (Hasse Principle). Let k be a number field, the Hasse principle fails for a k-variety X if∏
v∈Ωk

X(kv) 6= ∅ and X(k) = ∅.

Recall that given a topological field (addition, product and inverse map are continuous) k (eg. a local
field) and X a k variety we can give a topology over X(k), called the analytic topology in this way. Given
An(k) = k×· · ·×k the product topology, ifX is a closed subvariety of An, the we can giveX(k) ⊂ An(k)
the subspace topology. Notice that a map of k-varieties X → Y induces a continuous map X(k)→ Y (k).

Definition 1.3.2 (Weak approximation). Let k be a number field. Weak approximation holds for a k-variety
X if the image of the diagonal map

X(k)→
∏
v∈Ωk

X(kv)

is dense in the right hand side equipped with the product topology.

If the right hand side is not empty, this amounts to say that X(k) is not empty and that for any finite set
S ⊂ Ωk, the image

X(k)→
∏
v∈S

X(kv)

is dense.
We end this section stating some theorems we will use often in the following talks.

Theorem 1.3.3. Let k be a number field, Ωk its set of places. There are embeddings

iv : Br (kv)→ Q/Z
For non-archimedean v, the map iv is an isomorphism. For a real place v, the map invv induces Br (kv) =
Z/2Z. For a complex place v, Br (kv) = 0.

The following is a deep theorem form Class Field Theory.

Theorem 1.3.4. Let k be a number field, Ωk its set of places. Then there is the following exact sequence

(1.1) 0→ Br (k)→
⊕
v∈Ωk

Br (kv)→ Q/Z→ 0

Remark 1.3.5. From the Injectiveness of the first map (and the interpretation of the two torsion of the
Brauer groups in terms of quaternion algebras) it follows that the conics in two variables over a number field
satisfy the Hasse principle.

Moreover we will use often also the following generalization.

Theorem 1.3.6. Let k be a global or a local field, then H3(k, k
∗
) is zero.

All the proof can be found in [SN86].
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1.4. Miscellaneous.

1.4.1. Weil Restrictions. Let k a field of characteristic 01, and L/k a finite extension of degree d. We want
to explain how to get, from a variety Y defined over L, a variety X defined over k. This procedure is called
Weil restriction or restriction of scalars, and we write X = RL/k(Y ). Moreover we want to do this in a
functorial way s.t. group objects go to group objects. More formally we are interested in the (representative
of the) adjoint functor of the extension of scalars:

HomL(VL,W ) ∼= Homk(V,RL/k(W ))

This means, in the affine case, that RL/k(Y ) is uniquely described (if it exists) by the following property:

RL/k(Y )(A) = Y (AL)

for any A ∈ k-algebra.
We just give the first step of the construction:

RL/k(ANL )) = ANdk
and this is done choosing a basis of L/k and a “change of variables”.

We are ready to produce many examples in a natural way. The proof is an easy exercise.

Proposition 1.4.1. The following hold
• LetX1, X2 biregularly isomorphic varieties, X1 has strong approximation/WA if and onlyX2 does.
• Let X = X1 ×X2, the existence of strong approximation/WA for X is equivalent to the existence

of the same type of approximation n both factors.
• Let X = RL/k(Y ), the existence of strong approximation/WA for X over k w.r.t S ⊂ Ωk is

equivalent to the existence of the same type of approximation in Y over L w.r.t S′ ⊂ ΩL given by
extending the valuations of S.

1.4.2. Induced Module are acyclic. Recall the definition of Induced module. Let G a finite group, H ≤ G.
From an H-module A there is a natural way to obtain a G-module: we define IHG (A) := {ϕ : G →
A, H-invariant} with the action of G given by (g.ϕ)(g′) := ϕ(g′.g). IHG (A) are called induced module.

For H ≤ G, IG(A) is H-induced: we can write G/H = {[gi]} then IH
(∏

[gi]
Agi

)
and IG(A) =∏

g∈GAg =
∏
h∈H

∏
[g]∈G/H A[g]

Lemma 1.4.2. IG(A) are acyclic.

Proof. Consider the following:

H i(G, IHG (A))
res−−→ H i(H, IHG (A))

inf−−→ H i(H,A)

We claim that this composition gives an isomorphism. The composition at degree 0 is an isomorphism and
both are derived functor, hence universal, hence they coincide. Where we the composition rule of (total)
derived functors, Rn(F ◦ G) = Rn(F ) ◦ G, holds since (−)G and HomZ[H](Z[G],−) send injectives to
injectives thanks to the existence of an exact left adjoint. �

Notice that in the profinite case the result is still true by taking the limit.

1In the purely inseparable case one needs to use some “devissage”.
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2. TALK 2: TORSORS, EMILIANO AMBROSI

This talk is divided in two parts. In the first we will define the notion of torsor and discuss some proper-
ties. In the second we will see how this notion is related to the study of rational points.

2.1. Torsors. We start with an example.

Example 2.1.1. Fix k = Q, and G = Gal(Q,Q), we want to study how far is k from having the roots of its
elements. This is parametrized by H1(k, µn), since from the exact sequence 0 → µn → Gm → Gm → 0
and the fact that H1(k∗,Gm) = 0, we obtain that H1(k, µn) = k∗

k∗n . Torsors arise naturally as a geometric
interpretation of this cohomology group. In fact, for every a ∈ k∗

k∗n we cam construct the k-algebra Ba :=
k[x]

(xn−a) and this algebra depends, up to iso, only on the class of a in the cohomology group. Moreover this

algebra has a natural action of µn = k[x]
xn−1 , given by the map Ba → µn ⊗Ba that send x to x⊗ x. Observe

that this algebra is trivial (isomorphic to µn with the action of multiplication over itself) if and only if a
is the neutral element of H1(k, µn). However the algebra is locally trivial in the ètale topology, since it is
trivialized by the étale-covering Spec(k(ζn) → k. So the failure of k from having the roots of its elements
is parametrized by some geometric objects with an action of a group, that are locally trivial in the ètale
topology, but not trivial.

Definition 2.1.2 (Torsors). If X is a scheme, G → X an fppf group scheme (not necessary commutative)
over X , we define a X (right) torsor under G as a map Y → X , with a (right) G action, such that there
exists a covering (Ui → X) in the fppf topology that trivialized Y , in the sense that Y × Ui ' G × Ui
compatible with the action of G.
A sheaf of torsors is a sheaf of G sets, locally trivial in the fppf topology. A sheaf of torsors is a torsor if
only if it is representable.

Theorem 2.1.3. IfX is a variety over a field andG is an group is affine, flat and locally of finite presentation
over X then every right sheaf of torsor under G is representable.

Observe that Y → X is a covering of X , since it is fppf. Moreover Y → X is a trivializing covering for
Y → X since the natural map Y ×G → Y × Y , that send (y, g) to (y, y · g), is an iso, since this property
can be checked locally in the fppf topology (i.e. after an fppf base change). We note also that an X-scheme
with an action of G is isomorphic to G with the action of multiplication if and only if the action of G is free
and transitive.

Example 2.1.4. k[x]
xn−a are µn torsors over Q.

Example 2.1.5. Take X = A1
k − {0} and G = Gm,k. Then (k[x,y]

x−y2 )x is a X torsor under Gm.

Example 2.1.6. If k ⊆ L is Galois, then L is a k torsor under the constant group Gal(L, k) since L⊗ L '
Ln.

Example 2.1.7. If X ⊆ Pn is a hypersurface, then Cone(X) ⊆ An+1 − {0} is a Gm-torsor.

As always we hope that something that is locally trivial can be parametrized by some cohomology group
related to X and G. The problem is that G is not abelian in general, so that the usuals cohomology theories
can not be used. Suppose that F is a sheaf of G torsors and choose a cover (Ui → X) that trivializes
F . Given yi ∈ F (Ui), then, by definition, there exists a unique gij ∈ G(Uij) such that yigij = yj in
F (Uij). They are such that gijgjk = gik, since yigik = yk = yjgkj = yigijgjk. Moreover, if y

′
i is another

choice of yi we know that there exist a hi ∈ G(Ui) such that yihi = y
′
j , and hence g

′
ij = h−1

i gijhj since
y
′
igij

′
= y

′
j = yjhj = yigijhj = y

′
ihigijhj .

Definition 2.1.8 (Non abelian cohomology). If X is a scheme, G is a sheaf of groups and (Ui → X) is a
covering, we define H1((Ui → X), G) as the pointed set of {gij} ∈ G(Uij) such that gijgjk = gik modulo
the relation {gij} ' {g

′
ij} if there exist hi ∈ G(Ui) such that g

′
ij = h−1

i gijhj .
We define H1(X,G) as the direct limit on the possible cover of X of H1((Ui → X), G).
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Remark 2.1.9. If G is a sheaf of abelian group then H1((Ui → X), G) is nothing else that the usual Čech
cohomology.

Theorem 2.1.10. There is a bijection between the setH1((Ui → X), G) and the set of isomorphism classes
of sheaves of torsors under G trivialized by (Ui → X). Passing to the direct limit we find a bijection of
pointed set between H1(X,G) and the sheaves of torsors under G.

Proof. We have constructed a map, so we have only construct an inverse map. Take a family of {gij}. We
want to construct a sheaf F and so to every V → X we have to give a set F (V ). Consider the sheaves C0

that send every V to
∏
G(Ui×V ) and C1(V ) :=

∏
G(Uij ×V ). We have a map of sheaves C0 → C1 that

(hi) to (h−1
i hj). Then the canonical map Uij×V → Uij gives us a map fij : G(Uij)→ G(Uij×V ) and so

we have a family {fij(gij)} of C1(V ) for every V . Define now F as the subsheaf of C0 made by the inverse
image of this family. We have a natural well defined action of G on F made by G(V ) × F (V ) → F (V ),
made by (g.x) = g−1x and so we have just to show that F is locally trivial. Of course the trivializing cover
is (Ui → X). We want to construct an iso G(Ui) → F (Ui) and so we send a h to (hgij). This map is well
defined by the cocycle condition since g−1

ij h
−1hgik = gjk and, clearly, is an isomorphism. �

Now we can do some computations that will be useful in the future. Since Y → X is a trivial cover for
itself, computing H1((Y → X), G) will be pretty easy.

Lemma 2.1.11. Suppose that G,G′ are two algebraic group over k and Y → X is a torsor under G.
Then Ȟ1((Y → X), G′) is the set of equivalence classes of morphisms f : Y × G → G′ such that
f(y, s)f(ys, s′) = f(y, ss′), where f ' f ′ if and only if exists g : Y → G′ such that f ′(y, s) =
g(y)f(y, s)g(ys)−1. Moreover, if G = G′ the class of Y is given by the map Y ×G→ G.

Proof. We know that H1(Y → X,G′) is the set of maps f : Y × Y → G′ such that fπ1,3 = fπ1,2fπ2,3

where πi,j are the different projections Y × Y × Y → Y × Y . Recall that Y × Y ' Y × G, and
Y × Y × G ' Y × Y × Y . A direct computation shows that under this isomorphism the projection π1,3

becomes the map (y, g, g′) 7→ (y, gg′), π1,2 becomes the map (y, g, g′) 7→ (y, g), π2,3 becomes the map
(y, g, g′) 7→ (yg, g′), and so we are done.
f is equivalent to g if and only if exists a map g : Y → G′ such that g = π1fπ

−1
2 and we can conclude just

noticing that the map π1 becomes, under the iso, the map that send (x, y) to x and that the second projection
becomes the map that send (x, g) to xg.
The last statement is clear by the previous reasoning. �

Suppose now that G is abelian and G′ = Gm. Then every character χ : G → Gm extend to a map
Y × G → Gm that satisfies the cocycle condition and so it is an element of H1(Y → X,G). Moreover χ
induces a morphism between the cohomology groups that makes the following diagram commutative:

H1(Y → X,G) H1(X,G)

H1(Y → X,Gm) H1(X,Gm) = Pic(X)

χ∗ χ∗

So the class of χ∗(Y ) in the Picard is equal to the class of the character χ inH1(Y → X,Gm). In particular
we have a homomorphism of groups Hom(G,Gm)→ Pic(X).

Definition 2.1.12. The type of a Y -torsors is the morphism Hom(G,Gm)→ Pic(X) constructed above.
We say that a torsor is universal is this morphism is an isomorphism.

IfG is abelian we have the Čech to derived spectral sequence. We quickly recall the general construction,
which will be applied to F = G. We can factorize the global section functor

Γ : Sh(X)→ Ab

by the composition of the forgetful D : Sh(X)→ PSh(X) with the functor Ȟ0 : PSh(X)→ Ab that send
F to Ker(

∏
FUi →

∏
FUij)). Now the ith derived functor of D is just the functor that send F to the

presheaf F̃ i that send U to H i(U,F ), the ith derived functor of Ȟ is nothing else that the functor that send
9



F to the Ȟi((Ui → X), F ), where H i((Ui → X), F ) is the usual Čech cohomology. So the Grothendieck
spectral sequence in this situation is Ep,q2 = Ȟp

((Ui → X), F̃ q)⇒ Hp+q(X,F ) and the exact sequence of
low degree is

0→ Ȟ1
(X,H0(X,F ))→ H1(X,F )→ Ȟ0

(X,H1(X,F ))→ Ȟ2
(X,H0(X,F ))→ H2(X,F )

If G is non abelian we can recover a similar exact sequence of pointed set

1→ Ȟ1
((X,H0(X,F ))→ H1(X,G)→ Ȟ0

(X, Ȟ1
(X,G))

by hand, and we leave the details to the reader.

2.2. Torsors and cohomology. To finish this short introduction to torsors, we’d like to present an applica-
tion of this theory to cohomology. We will work with étale torsors (same definition, just change fppf with
étale). First we recall an important fact about étale cohomology that will be useful in the sequel.

Proposition 2.2.1. There is an equivalence of categories that preserves cohomology, between the category
of abelian sheaves over Spec(k) and the category of G = Gal(k, k) discrete moduli. In particular we have
an isomorphism between H i(Spec(k), G) and H i(k, colim G(L)).

Proof. We construct the two functors that realize the equivalence of categories.
An étale sheaf F is nothing else that a family G(L) abelian groups for every separable extension of k such
that F (L) = F (L′)Gal(L′,L), for every L ⊆ L′ Galois. In fact the sheaf axiom on L ⊆ L′ is the exactness of
the following sequence: F (L)→ F (L′)→ F (L′ ⊗ L′). But F (L′ ⊗ L′) ' F (L′n), F commutes with the
direct sum, and so the claim is proved. So we can associate to F the G module colimF (L), where L runs
over every separable extension of k. The natural action of G on colimF (L) it is clearly well defined and it
is continuous since it factorizes, by the sheaf axioms, over a finite field extension.
For the other functors we take a discrete G-modules T and we associate to him the sheaf F (L) = TGal(k,k).
It is a sheaf, by the previous discussion and the two functors are one the inverse of the other (observe that
every discrete G, is the colimit of its fixed points).
For the statement about cohomology just observe that the composition of the functor from the ètale topos
and the functor global sections is exactly the fixed point functors. �

Example 2.2.2. We have H1(G, k
∗
) = H1

et(Spec(k),Gm) = H1
zar(Spec(k),Gm) = Pic(k) = 0.

Example 2.2.3. We have H1
et(Spec(k),Z) = H1(G,Z) = Hom(G,Z) = 0 since G is profinite.

In the same way it is possible to prove something more general.

Theorem 2.2.4. Suppose thatG is a topological group. Then the category G−set of sets with a continuous
action of G is equivalent to the category of sheaf over C, where C is the subcategory of G − set made by
element in the form (G/U) where U is a open subgroup of G and all the maps are covering.

Proof. [MM92] �

Suppose that X is a connected scheme. Then, applying this theorem with G = π1(X), the étale funda-
mental group, we get that the category of π1(X)− sets is equivalent to the category of sheaves over C. But,
by the Galois-theory of Grothendieck and using that G is profinite, C is equivalent to the category of finite
étale covers of X . "Abelianizing" this, we get that the category of discrete G modules is equivalent to the
category of étale abelian sheaf over the category of finite ètale covers of X . Unluckily, this does not mean
that the étale cohomology is a group cohomology: the category of finite étale covers of X is too small to
compute the ètale cohomology.

Example 2.2.5. If k is algebraically closed field, then the finite étale site of P1
k is trivial and hence the higher

cohomology, computed wrt the finite site, of any sheaves is 0!

Example 2.2.6. H1(G,Z) = 0, as explained above, but H1
et(X,Z) is in general different from zero. Con-

sider, for example,X the nodal cubic in A2
k, we have an exact sequence of sheaves 0→ Z→ j∗Z→ i∗Z→

0 where i the inclusion of the singular point in X and j the normalization map. Taking global section we
get 0 → Z → Z → Z → H1(X,Z). Since the first map is an isomorphism, the map Z → H1(X,Z) is
injective and hence H1(X,Z) 6= 0.
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Suppose now that H is a finite ètale abelian group over X . Then H1(X,H) is just the abelian group
of sheaf of torsors under H . Each of this is finite π1(X) module with a free and transitive action, i.e a H
torsor (principal homogeneous space) in the usual group theoretic meaning. But they are parameterized by
H1(π1(X), H) and hence we get the following:

Theorem 2.2.7. Suppose thatX is a connected scheme andH a finite ètale abelian group. ThenH1(X,H) =
H1(π1(X), H).

Example 2.2.8. If k is algebraically closed field, then the finite ètale site of P1
k is trivial, so that π1(P1

k) = 0
and hence H1(P1

k, H) = 0 for every finite abelian group.

For the basic results abut the étale fundamental group cited above we to [Len08]

2.3. Torsors and rational points. We introduce a first obstruction to rational points. In the following

X
f−→ Spec(k) is a variety over a perfect field k and G is commutative k-group scheme. Then we have the

following commutative diagram:

Sh(X) Ab

Sh(k)

Γ(X,−)

f∗
Γ(k,−)

So we get, from the Grothendieck spectral sequence, the Leray spectral sequence:

Ep,q2 = Hp(k,Rqf∗G)⇒ Hp(X,G)

and hence the exact sequence of low degrees is

0→ H1(k, f∗G)→ H1(X,G)→ H0(k,R1f∗G)→ H2(k, f∗G)→ H2(X,G)

where Rqf∗G is the sheaf associated to the presheaf that sends U to H1(X×U,G). Now H0(k,R1f∗G) =
H0(Γk, colimH1(XL, f∗G)) = H0(Γk, H

1(X,G)) = H1(X,G)Γk (where the colimit is taken over the
finite extension of k). An element in H1(X,G)Γk is nothing else that a Γk invariant torsor, i.e. a X torsor
Y under G with a family {ψg}g∈Γk of automorphism such that makes the following diagram commutative:

Y Y

k k

ψg

g

Assume the following
• X(k) 6= ∅,
• G(X) = G(k)

Then H2(k, f∗G) = H2(Γk, colim f∗G(L)) = H2(Γk, G(X)) = H2(Γk, G(k) = H2(Γk, G) so that the
map H2(k,G) → H2(X,G) is injective (it has a splitting given by the map induced by the rational point)
and hence the map H1(X,G) → H1(X,G)Γk is surjective. Observe that every element in H1(X,G), i.e
every X-torsor under G gives a Γk invariant torsor by base change, so that the surjectivity of that map is
equivalent to the fact that every Γk invariant torsor comes from a torsor defined over X .
To conclude we have established the following:

Proposition 2.3.1. If G is commutative, G(X) = G(k) and there exists a Γk invariant torsor that does not
come from a torsor over X , then X has no rational points.

Example 2.3.2. Suppose that X is a conic in P2
k and G = Gm. Then we the exact sequence becomes

0→ H1(k, k
∗
) = 0→ H1(X,Gm) = Pic(X)→ H1(X,Gm)Γk = Pic(X)Γk . Observe that Pic(X) ' Z

(It has a rational point and hence it is P1) and the action of the Galois is trivial (every automorphism must
send 1 to 1 or to−1, but it must send ample divisors to ample divisors and hence 1 goes to 1). So Pic(X) ' Z
and the map Pic(X) → Z send a divisor to its degree. So the map is surjective if and only if there exists
a divisors of degree 1. But this is equivalent to have a rational point! In fact if X has a rational point then
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it clearly has a divisors of degree 1. Conversely, if X has a divisors D of degree one, then Riemann Roch
theorem and Serre duality tell us that h0(D)− h0(K −D) = deg(D) + 1− g, but g = 0 and K −D has
negative degree, so that h0(K −D) = 0. Hence h0(D) = 2 and hence D has a linearly equivalent effective
divisors E of degree 1. But this means that X has a rational point!

Now we will show how is possible to recover the rational points ofX from the rational points of k-torsors
under G. Let Y → X be a right k-torsor under G that is a quasi projective variety.

Suppose that Spec(k) → X is a k rational point. Then Spec(k) × Y is a k-torsor under G so that we
have a map θ : X(k)→ H1(k,G) and hence

X(k) =
⋃

a∈H1(k,G)

θ−1(a).

We want to find a better description of this map. First of all we introduce the twist of a torsor.

Definition 2.3.3 (Twist). Suppose that F → X is a left torsor under G. Then we call the twist of F with
Y , if it exists, the quotient of Y × F by the action of G, made by the map (g, y, f) 7→ (yg−1, gf) and we
denote it by Y F . It is a sheaf of torsor and if F is quasi-projective then it is representable (descent theory ).

Theorem 2.3.4. If X is a variety over a field k, G is a k-algebraic group and Y → X a right G k-torsor
that is a quasi projective variety then the twist by any other k-torsor under G is representable.

Remark 2.3.5. From the definitions we have
• GF ' G
• If Z is a right torsor, we denote with Z ′ the left torsor associated, we have that Z′G is a group

scheme, Z is a right torsor over Z′G and ZZ
′ =Z′ G.

• We have a bijection H1(X,G)→ H1(X,Z′ G) that send Y to ZY .
• If G is commutative the bijection is just the map that sends Y to Y − Z.

Before proving the last theorem we observe that every equivariant map between torsors is an iso (this is
clear when both are groups and it is true in general by descent). In particular a k-torsor Y under G has a
rational point if and only if it is isomorphic to G.

Theorem 2.3.6. If f : Y → X is a torsor under G, then we have the following equality

X(k) =
⋃

Z torsors over k
Z′f(Z′Y (k))

where Z′f is the induced map Z′Y → X

Proof. It is enough to show that θ−1(a) = ∪Z∈a Z′f(Z′Y (k)).
Z′Y×XSpec(k) has a rational point if and only if Z′Y×XSpec(k) 'Z′ G in and only if Y×XSpec(k) ' Z.
So a rational point x of X lies over a rational point of Z′Y if and only if θ(x) is in the class of Z. �

Example 2.3.7. We verify the equality of the preceding theorem whenX = A1
k−{0} and Y = Spec( k[x,y]

(x−y2)x
),

a Z
2Z = µ2 torsor, when chark 6= 2. First we have to understand what are the µ2 torsors, but this is easy

since H1(k, µ2) ' k∗

k2∗ so that the torsors are in the form Za = k[x]
x2−a with a ∈ k∗ and Za is equivalent t

Zb if and only if a = x2b for some x ∈ k∗. Then we compute the twist Y Za. This is nothing else then
spectrum ofBa = ( k[x,y]

(x−y2)x
⊗Za)µ2 ' ( k[x,y,z]

(x−y2,z2−a)
)µ2 where µ2 acts onBa by the automorphism that send

y to −y and z to −z. The fixed point are generated by y2, z2yz, so that Ba ' k[x,z]
z2−ax . So to compute the

rational point of X we have just to take the union of the image of the rational points of Ba via the canonical
map Spec(Ba) → X , with a ∈ k∗

k2∗ . But the rational point of Ba are just (z − b, x− ab2) so that for every
a ∈ k∗

k2∗ we recover exactly all the point in the form ab2, i.e the point in the same class of a! The union of
this points with all possible a is exactly X(k).

This easy theorem is the prototype of an important result we will discuss in the next talk, namely the main
Theorem of Colliot-Thélène and Sansuc descent theory.

12



3. TALK 3: DESCENT AND BRAUER-MANIN OBSTRUCTION, MARCO D’ADDEZIO

3.1. Elementary obstruction and fundamental exact sequence. We want to construct the fundamental
exact sequence of Colliot-Thélène and Sansuc.

Given a Γk-module M of finite type, consider the Ext-spectral sequence:

Ep,q2 = ExtpΓk(M, (Rqp∗)Gm)⇒ Extp+qXét
(p∗M,Gm),

given by the composition of

Sh(két).

Sh(Xét) Ab

p∗ HomΓk
(M,−)

HomXét (p
∗M,−)

The functor p∗ sends injectives in injectives as its left adjoint is exact. The low degrees exact sequence is

0→ Ext1
Γk

(M,k[X]∗)→ Ext1
Xét

(p∗M,Gm)→ HomΓk(M,Pic(X))

∂−→ Ext2
Γk

(M,k[X]∗)→ Ext2
Xét

(p∗M,Gm).
(3.1)

We want to simplify it with the following Lemma.

Lemma 3.1.1. Let S be an X-group scheme of multiplicative type. Then we have an isomorphism

H i
fppf (X,S) ' ExtiXét

(p∗Ŝ,Gm)

functorial in S and X .

Proof. We will prove it when S is smooth (and the general case?). Thanks to a Theorem of Grothendieck
[Gro68, Théorème 11.7] H i

fppf (X,S) = H i
ét(X,S). We use local-to-global Ext spectral sequence that you

can find in SGA4 [AGV71, Exposé V, Théorème 6.1],

Ep,q2 := Hp(Xét,ExtqXét
(p∗Ŝ,Gm))⇒ Extp+qXét

(p∗Ŝ,Gm),

with the following commutative diagram of functors:

Sh(Xét).

Sh(Xét) Ab

Hom(p∗Ŝ,−) Γ(Xét,−)

Hom(p∗Ŝ,−)

The first step is to show that the spectral sequence completely degenerates, i.e. for i ≥ 1, ExtiXét
(p∗Ŝ,Gm) =

0. It’s enough to show that the sheaf is zero on the stalks. Thus we take Y the spectrum of a strictly henselian
local ring. As S is locally constant in the étale topology, it’s enough to show that for i ≥ 1,

ExtiYét
(Z,Gm) = ExtiYét

(Z/nZ,Gm) = 0.

The first group is zero because it corresponds to H i
ét(Y,Gm), but taking global sections is exact for a strictly

henselian local ring. The second group is zero thanks to the vanishing of the first, using the exact sequence

0→ Z→ Z→ Z/nZ→ 0.

�

In virtue of the previous Lemma and the exact sequence 3.1, we have proved:
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Theorem 3.1.2 (Colliot-Thélène, Sansuc). If X is a geometrically integral smooth variety and S a group of
multiplicative type, we have an exact sequence

0→ Ext1
Γk

(Ŝ, k[X]∗)→ H1
fppf (X,S)

type−−→ HomΓk(Ŝ,Pic(X))

∂−→ Ext2
Γk

(Ŝ, k[X]∗)→ H2
fppf (X,S),

functorial in S, called fundamental exact sequence. The map type associates to a torsor its type.

So for any Γk-invariant morphism λ : Ŝ → Pic(X), the existence of a torsor of type λ is equivalent to
∂(λ) = 0. If Pic(X) is of finite type and Ŝ = Pic(X), we can take Id ∈ HomΓk(Ŝ,Pic(X)).

Definition 3.1.3 (Elementary obstruction). We will call the elementary obstruction ofX the class ∂(Id) and
we will denote it as e(X).

Thanks to the fundamental exact sequence we have the following corollary.

Corollary 3.1.4. If Pic(X) is of finite type the existence of universal torsors is equivalent to the vanishing
of the elementary obstruction.

Proof. Let’s put Ŝ = Pic(X) in the fundamental exact sequence, if λ ∈ HomΓk(Ŝ,Pic(X)), by functorial-
ity we know that ∂(λ) = λ∗(e(X)). If λ is an isomorphism then λ∗(e(X)) = 0 if and only if the elementary
obstruction is zero. �

Moreover we have an other simplification of the sequence:

Corollary 3.1.5. If we add the hypothesis k[X]∗ = k
∗
, then the fundamental exact sequence becomes:

0→ H1(k, S)
p∗−→ H1(X,S)

type−−→ HomΓk(Ŝ,Pic(X))

∂−→ H2(k, S)
p∗−→ H2(X,S).

So in this case the space of torsors of a certain type is a principal homogeneous space under H1(k, S).
The action of H1(k, S) is exactly the twist described by Emiliano in the previous talk2.3.3. In particular if
k is algebraically closed the type identifies the torsor.
Always in the hypothesis k[X]∗ = k

∗
, we can even describe the set of rational points using torsors of a

certain type, just rewriting the Theorem 2.3.6 as

X(k) =
⋃

type(Y,f)=λ

f(Y (k)).

Now we want to proof two Theorems about the elementary obstruction.

Theorem 3.1.6. LetX be a geometrically integral, smooth k-variety, then the class−e(X) ∈ Ext2
Γk

(Pic(X), k
∗
)

is represented by the 2-fold

(3.2) 0→ k
∗ → k(X)∗ → Div(X)→ Pic(X)→ 0.

Proof. We need a general fact of Homological Algebra. If p : X → Spec(k) is a k-scheme and

0→ A→ B → C → 0

is an exact sequence of étale sheaves of abelian groups over X , if the sequence

(3.3) 0→ p∗(A)→ p∗(B)→ p∗(C)→ R1p∗(A)→ 0

is exact then if we consider the Ext-spectral sequence

Ep,q2 = ExtpΓk(−, Rqp∗(A))⇒ Extp+qXét
(p∗(−), A)

Lemma 3.1.7. The transgression map (E0,1
2 → E2,0

2 ),

HomΓk(−, R1p∗(A))→ Ext2
Γk

(−, p∗(A)),

is given by the Yoneda’s pairing with the opposite of the class represented by the 2-fold (3.3).
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The proof of this Lemma can be found in [CTS87], Lemma 1.A.4.
We also need a quite well known fact:

Proposition 3.1.8. Let X be an irreducible, noetherian, regular scheme and j : η → X the inclusion of the
generic point. Then we have an exact sequence of étale sheaves

0→ Gm → j∗Gm →
⊕

x∈X(1)

(ix)∗Z→ 0.

This proposition is just a consequence of the same exact sequence in the Zariski site. We need to check
that R1(p∗)(j∗Gm) is zero, but we know that it is a subsheaf of R1(p ◦ j)∗(Gm), thanks to the convergence
of the Grothendieck spectral sequence for the composition of p∗ and j∗. But R1(p ◦ j)∗(Gm) is zero by
Hilbert 90, so it is easy to check now that the 2-fold (3.3) becomes exactly (3.2). Thus we are done. �

The second important Theorem of the subsection is the following.

Theorem 3.1.9. Let X be a geometrically integral, smooth k-variety such that k[X]∗ = k
∗
, we have the

following implications:

X(k) 6= ∅ ⇒
(
k
∗
↪→ k(X)∗ has a Γk-equivariant section.

)
⇔ e(X) = 0.

As a consequence of this Theorem, using the Corollary 3.1.4 we have:

Corollary 3.1.10. If Pic(X) is of finite type, the existence of a rational point implies the existence of an
universal torsor.

This fact is important, we will use it in the proof of the main Theorem of Colliot-Thélène and Sansuc
descent theory. Now we will prove the Theorem, we divide it in different parts.

Proposition 3.1.11. Let k be a perfect field,X a smooth, geometrically integral k-variety, such thatX(k) 6=
∅, then the natural map

k
∗
↪→ k(X)∗

has a Γk-invariant retraction.

We need the following lemma:

Lemma 3.1.12. Let G be a profinite group, H a closed subgroup, B a G-module, A an H-module. Then

ExtnG
(
Z[G]⊗Z[H] A,B

)
= ExtnH (A,BH)

Where BH is a Z[H]-module obtain restricting the action of B.

Sketch of proof. First of all we reduce to the case when G and H are finite groups. Then we choose a
projective resolution of A. Since Z[G] is a free Z[H]-module, Z[G]⊗Z[H] is exact and it sends projectives
in projectives. Thus it’s enough to check that

HomG

(
Z[G]⊗Z[H] A,B

)
= HomH (A,BH) ,

but this can be done similarly to the commutative case. �

Now we can prove the Proposition.

Proof of Proposition 3.1.11. Let P ∈ X(k) and consider the natural maps

k
∗
↪→ O∗

X,P
↪→ k(X)∗

where O∗
X,P

is the Zariski stalk. The first map admits a section g 7→ g(P ), so it’s sufficient to find a section

of the inclusion O∗
X,P

↪→ k(X)∗. Because X is smooth, we have an exact sequence of Γk-modules

0→ O∗
X,P
→ k(X)∗ → DivP

(
X
)
→ 0

where
DivP

(
X
)

=
⊕

x∈Spec(OX,P )(1)

Zx
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If this sequence splits then we get the missing section. To show this we show that Ext1
Γk

(
DivP (X), O∗

X,P

)
=

0. We notice that

DivP (X) =
∑

x∈SpecOX,P
(1)

∑
x over x

Zx =
∑

x∈SpecOX,P
(1)

Z [Γk/Hx]

where Hx is the Kernel of the transitive action of Γk on the points over x, corresponding to a certain
extension Lx/k. We have

Ext1
Γk

(
DivP (X), O∗

X,P

)
= Ext1

Γk

(∑
x

Z [Γk/Hx] , O∗
X,P

)
=

=
∏
x

Ext1
Γk

(
Z [Γk/Hx] , O∗

X,P

)
.

Since Z [Γk/Hx] = Z[Γk]⊗Z[Hx] Z, we can use Lemma 3.1.12 and we obtain that for any x,

Ext1
Γk

(
Z [Γk/Hx] , O∗

X,P

)
= Ext1

Hx

(
Z, O∗

X,P

)
.

If A := OXLx ,P and p : Spec(A)→ Spec(Lx) is the structural map,

Ext1
Hx

(
Z, O∗

X,P

)
= H1

ét(SpecLx, p∗Gm,A)

because the functor HomHx(Z,−) is equal to the functor M →MHx . By Leray spectral sequence,

H1
ét(SpecLx, p∗Gm,A) ↪→ H1

ét(SpecA,Gm,A).

The right group is zero by Hilbert 90 for local rings, so we are done.
�

In the proof of the Proposition 3.1.11 we have showed an useful property of the Γk-module of divisors
that can be easily generalized as follows.

Lemma 3.1.13. Let X be a variety over a perfect field k, then the Γk-module of Weil divisors on X ,
DivWeil(X) is isomorphic to a certain sum ∑

i∈I
Z[Γk/Hi],

with Hi open normal subgroups (thus of finite index) of Γk and I not necessarily finite.

Definition 3.1.14. We will call permutation module a Γk-module that contains a basis invariant (not nec-
essarily fixed) under the action of Γk. Thus it’s a Γk-module of the form

∑
i∈I Z[Γk/Hi] with Hi closed

subgroups of Γk and I not necessarily finite.

Thus in Lemma 3.1.13 we have showed that DivWeil(X) is in particular a permutation module. Another
fact that we will use many times, whose proof is the same as in the proof of Proposition 3.1.11 is the
following.

Lemma 3.1.15. LetA be a local ring that is a k[Γk]-module, for any permutation moduleM , then Ext1
Γk

(M,A∗) =

0. In particular when A = k we obtain

Ext1
Γk

(M,k
∗
) = H1(k,M) = 0.

Let’s conclude now the proof of Theorem 3.1.9.

Proposition 3.1.16. Let X be a geometrically integral, smooth k-variety such that k[X]∗ = k
∗
, then the

inclusion
k
∗
↪→ k(X)∗

has a Γk-invariant retraction if and only if the 2-fold (3.2) is zero in Ext2
Γk

(Pic(X), k
∗
), if and only if e(X)

is zero.
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Proof. If the map k
∗ → k

∗
(X) has a retraction then it is a general fact that the 2-fold (3.2) is zero in

Ext2
Γk

(Pic(X), k
∗
).

The other implication is not true in general for 2-folds. Consider the short exact sequence

(3.4) 0→ k(X)∗/k
∗ → Div(X)→ Pic(X)→ 0

and the long exact sequence given by the derived functor of Hom(−, k∗). Thanks to the Lemmas 3.1.13 and
3.1.15, we know that Ext1

Γk
(Div(X), k

∗
) = 0, thus we have the injective connection map

Ext1
Γk

(k(X)∗/k
∗
, k
∗
) ↪→ Ext2

Γk
(Pic(X), k

∗
)

given by the Yoneda pairing with the (3.4). The image of the short exact sequence

(3.5) 0→ k
∗ → k(X)∗ → k(X)∗/k

∗ → 0

is exactly the 2-fold (3.2), thus is zero. By the injectivity we obtain that also (3.5) is zero in Ext1
Γk

(k(X)∗/k
∗
, k
∗
),

thus the map k
∗ → k(X)∗ has a retraction, as we wanted.

Thanks to the Theorem 3.1.6 we also know that the vanishing of the 2-fold (3.2) is equivalent to the
vanishing of e(X). �

3.2. Weak and strong approximation.

3.2.1. Weak approximation. Let k be a number field, for any ν, we can endow X(kν) with the topology as
ν-adic space (add reference). We define the topological space

X(kΩk) :=
∏
ν∈Ωk

X(kν),

where the topology is the product of the topologies of X(kν). We will call this topology weak topology.
Of course there is a diagonal embedding of X(k) in X(kΩk). If we take X = A1

k we know that the
diagonal map

k ↪→
∏
ν∈Ωk

kν

is dominant. This is a classical result of Number Theory and it’s called weak approximation. We can wonder
if this is true even for other varieties. Thus we give the following definition.

Definition 3.2.1. We say that a smooth, geometrically integral k-variety X satisfies weak approximation if
the diagonal map

X(k) ↪→ X(kΩk)

is dominant.

As A1
k satisfies weak approximation, even Ank satisfy weak approximation for any n. The same remains

true for any open subset of Ank , because if U is a Zariski open subset of X , the set U(kν) is open in X(kν).
Let’s focus in the opposite problem: if U is a dense open subset of X and we have weak approximation

on U , what can we say about X? In virtue of the inverse function Theorem for complete fields with respect
a non-trivial absolute value [Ser64] we have the following fact.

Proposition 3.2.2. Let X be a smooth k-variety of dimension n and let ν be a place of k. If Pν is a local
point of X , i.e. Pν ∈ X(kν), then there exists an open U ⊆ X(kν) that contains Pν that is homeomorphic
to a non-empty open subset of knν .

As X is smooth, by the previous Proposition, the set U(kν) is dense in X(kν). Indeed X \U is a Zariski
closed subset of X of lower dimension, as X is irreducible, thus X(kν) \ U(kν) has empty interior in the
ν-adic topology.

So for any local point Pν ∈ X(kν) there exist local points Qν ∈ U(kν) close as we want to Pν . Then, as
weak approximation holds in U , we can find rational points R ∈ U(k), close as we want to Qν . We have
proven the following important fact.

Proposition 3.2.3. Let X be a smooth, geometrically integral k-variety containing an open dense subset
which verifies weak approximation. Then X satisfies weak approximation.
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Corollary 3.2.4. IfX is a smooth, geometrically integral k-rational variety, then weak approximation holds.

An other quite elementary example of varieties satisfying weak approximation can be found in the article
of Colliot-Thélène, Sansuc and Swinnerton Dyer [CTSSD87]. At page 68, is stated the following Theorem.

Theorem 3.2.5. Let k be a number field and let V ⊆ Pnk with n ≥ 2 be a pure codimension 2 intersection
of two quadrics over k. Assume that V is geometrically integral and not a cone. Let X be V smooth and
assume that X(k) is not empty, then weak approximation holds for X .

Then in the last Talk 5, Professor Harari present the theory of weak approximation for linear groups.

3.2.2. Adelic points and strong approximation. If X it’s a not proper variety one can even pay more atten-
tion to integral points.

Definition 3.2.6. Let X be a k-variety, we say that a separate scheme X finite over Spec(Ok) is a model of
X if X ' Xη, with η the generic point of Spec(Ok).

Usually we will suppose the model to be integral. One can show the following fact.

Proposition 3.2.7. Any two models of X are isomorphic out a finite number of places. Moreover if the
variety is reduced (resp. irreducible, resp. proper) any model is reduced (resp. irreducible, resp proper) out
a finite number of places.

Moreover we have:

Proposition 3.2.8. Let X be a k-variety, then there exists a model X of X .

(add reference)
For any finite place ν, we have the inclusion

X(Oν) ↪→ X(kν),

we will call any element in the image of this map, integral points.

Remark 3.2.9. The inclusion displayed above is a formal consequence of the valutative criterion of sepa-
ratedness applied to the following diagram

Spec(kν) X

Spec(Oν) Spec(Ok)

If X is proper then for almost any place the map is even surjective thanks to the valutative criterion of
properness applied to X that is proper out a finite number of places.

Achtung. The integral points may depend on the choice of a model of X .

Then we define the set of adelic points of X by

X(Ak) := {(ρν)ν ∈ X(kν)| all but finitely many ρν are integrals}.
We notice that the definition does not depend on the choice of the model because any two of them are
isomorphic away from a finite number of places. We will not considerX(Ak) with the topology of subspace
of X(kν), we will be more interested to the topology defined by the basis of sets of the form∏

ν∈S
Uν × X(Oν),

with Uν an open of X(kν) and S finite, such that Ω∞ ⊆ S. We will call this topology the strong topology.

Example 3.2.10. If X = A1
k, then X(Ak) are the adeles with the adelic topology; if X = Gm, then X(Ak)

are the ideles with the idelic topology.

If Σ ⊆ Ωk we will call X(AΣ
k ) the set X(Ak), with ν-components removed for any ν ∈ Σ. We will

endow this set with the topology induced by the projection from X(Ak).
In analogy with weak approximation we give this definition.
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Definition 3.2.11. Let X be a smooth, geometrically integral k-variety, if S is a finite subset of Ωk, if

X(k)→ X(ASk )

is dominant, we say that X satisfies strong approximation off S. If S = ∅ we will say thatX satisfies strong
approximation.

Thanks to the valuative criterion of properness we can deduce that if X is proper then X(Ak) = X(kΩk)
as topological spaces. Thus for proper schemes weak or strong approximation are the same.

We also have that Ank satisfies strong approximation off one place, i.e. off S = {ν}, for any ν ∈ Ωk. This
is a classical result of Number Theory, more difficult than weak approximation.

What can we say about strong approximation on open subvarieties of Ank? In general it doesn’t hold off a
finite set of places.

Example 3.2.12. Consider Gm,Q ↪→ A1
Q, if we had strong approximation away from infinity, Gm(Z) would

be dense in
∏
`Gm(Z`), since if a point in

∏
`Gm(Z`) can be approximated in the strong topology by

rational points it can be approximated with integral points. But Gm(Z) = {1,−1} and it is not dense in any
Gm(Z`). We can even show that strong approximation doesn’t hold off a finite place p. If it had hold then as
before the set Gm(Z[1/p]) would be dense in

∏
`6=pGm(Z`). But Gm(Z[1/p]) = 〈−1, p〉, so if we consider

the extension Q(
√
−1,
√
p) of Q, by the Theorem of Chebotarev, there exists at least a prime ` that is totally

split. This means that −1 and p are both squares modulo `, thus the image of Gm(Z[1/p]) in Gm(Z`) is
contained in the subgroup of squares of Gm(Z`). Obviously the result can be extended to any number field k
and any finite set of places S. Thanks to Dirichlet unit Theorem the set Gm(Ok,S) is finitely generated, let’s
say by t1, . . . , tn, then we can take k(

√
t1, . . . ,

√
tn) and we can apply the Theorem of Chebotarev again.

We also have many other similar obstructions on Gm, just taking any étale cover

Gm
t→tn−−−→ Gm.

This phenomenon can be generalized by the following theorem due to Minchev whose proof can be found
in [Rap12], page 9.

Theorem 3.2.13 (Minchev 1989). Let X be an irreducible normal variety over a number field k such that
X(k) 6= ∅. If there exists a nontrivial connected unramified covering f : Y → X defined over an algebraic
closure k, then X does not satisfy strong approximation off any finite set S of places of k.

In particular if we take any polynomial in n variables f with coefficients in k and we take the open U in
Ank that is defined by f 6= 0, you can then take as Y the closed variety in An×Gm defined by f = xmn+1 6= 0.
The natural projection Y → U is unramified, thus on U we can not have strong approximation with respect
to any finite set of places.

At the same time if we take X the complement of a closed subset in Ank of codimension at least two we
still have strong approximation off one place. We will prove the Proposition in a slightly more general case.

Proposition 3.2.14. Let X be a smooth variety over the number field k satisfying weak approximation and
let S be a finite set of places of k. Let’s suppose that there exists a dense open U of X with the following
property

P) For any x ∈ U(k) there exists a dense open Vx of U such that for any y ∈ Vx(k) there exists a
variety Zx,y that satisfies strong approximation off S and a morphism fx,y : Zx,y → X such that
fx,y restricted to a certain open Z ′x,y is an immersion and the image of Z ′x,y contains x and y.

Then X satisfies strong approximation off S.

In particular P) is satisfied if the following property holds
P′) There exists a variety Z that satisfies strong approximation off S and a morphism f : Z → X such

that f restricted to a certain open Z ′ of Z is an open immersion.

Proof. Let X be a model of X and let T be a finite subset of Ωk \S containing Ω∞ \S. For any adelic point

P = (Pν)ν∈Ωk ∈
∏

ν∈T∪S
X(kν)×

∏
ν∈Ωk\(T∪S)

X(Oν)
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we have to find a rational point of X that is near as we want to P when ν ∈ T and integral when ν ∈
Ωk \ (T ∪ S).

In virtue of the implicit function Theorem, we can find local points of U that are near Pν for ν ∈ T .
Thus by weak approximation on U we can choose rational points x of U that are close as we want to Pν for
ν ∈ T .

A priori the local points xν could fail to be integral when ν ∈ Ωk \ (T ∪ S), let’s suppose that xν is not
integral when ν ∈ T ′ ⊆ Ωk \ (T ∪ S). We take Vx as in the property P). Thanks to the implicit function
Theorem, we can find local points of U near Pν for ν ∈ T ′. As Vx satisfies weak approximation we can find
a rational point y of Vx near the local points Pν for ν ∈ T ′, in particular we can choose y as a Oν-points for
any ν ∈ T ′.

Now let’s take fx,y : Zx,y → X as in the hypothesis ii), there exists on Z ′x,y an adelic point Q =
(Qν)ν∈Ωk such that Qν = xν when ν ∈ Ωk \ (T ′ ∪ S) and Qν = yν when ν ∈ T ′. Thanks to strong
approximation on Zx,y off S we can find a rational point z of Zx,y that is near Q in the strong topology of
Zx,y(Ak). As the morphism fx,y : Zx,y(Ak) → X(Ak) (add reference) is continuous fx,y(z) can be near
Q in the strong topology of X(Ak) as we want.

Since Q is near P for the places ν ∈ T and it’s integral outside T ∪ S we have the result. �

Corollary 3.2.15. Let X be an open subvariety of Ank obtained removing a closed subset of codimension at
least two, then X satisfies strong approximation off one place.

Corollary 3.2.16. Let X be an open subvariety of a smooth quadric Q of Pnk obtained removing a closed
subset of codimension at least two, then X satisfies strong approximation.

3.3. The adelic Brauer-Manin pairing. In this section we define an important pairing, which will be fun-
damental to describe an obstruction to the existence of rational points. The main ingredient will be the main
exact sequence of Class Field Theory, as in Theorem 1.1. For more details we refer to [Poo11], [Mil13] and
[Sko01].

First of all we recall a result.

Theorem 3.3.1. Let X a variety over a global field k. Let A ∈ Br(X), then for some S ⊂ Ωk finite, there
exists a scheme X of finite type, defined over Ok,S and a class A ∈ Br(X) with a morphism

i : X → X

identifying X with the generic fiber Xη, s.t. i∗ : Br(X)→ Br(X) sends A to A.

For the proof see Corollary 6.6.11. of [Poo11].

Definition 3.3.2 (Evaluation). Let X/k a variety and A ∈ Br(X). If L is a k-algebra and x ∈ X(L) then,
by functoriality of Br(−), it induces a homomorphism

Br(X)→ Br(L), A 7→ A(x).

Let X/k be a smooth and geometrically integral variety over a number field k. We are interested in the
pairing

Br(X)×X(Ak)→ Q/Z
defined by the following rule:

(3.6) (A, (Pv)) 7→
∑
v∈Ωk

invv(A(Pv)).

Where A(Pv) makes sense thanks to the previous definition and invv are the local invariant maps appearing
in the exact sequence of Theorem 1.1.

Lemma 3.3.3. The B.M. pairing is well defined, i.e. the sum of 3.6 is finite.

Proof. Given (Pv) ∈ X(Ak) and A ∈ Br(X) we have to show that A(Pv) = 0 for almost all v. Thanks
to Theorem 3.3.1 we can chose a finite set of places S big enough (containing all the archimedean places)
such that Pv ∈ X(Ov) for all v /∈ S (by the definition of the adelic ring). This concludes in virtue of the
following result.
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Theorem 3.3.4. Let R be the valuation ring of a non-archimedean local field k. Then Br(R) = 0.

�

Lemma 3.3.5. The B.M. pairing is trivial on Br0(X), and so it can be defined also as a pairing from
Br(X)/Br0(X).

Proof. This follows immediately from the exact sequence of Theorem 1.1 and the functoriality of Br(−).
�

Definition 3.3.6. We define X(Ak)Br(X) as the right kernel of the B.M. pairing, i.e. as the subset of X(Ak)
orthogonal to all elements of Br(X).

Lemma 3.3.7. The B.M. pairing is locally constant in the adelic topology.

For the proof see Corollary 8.2.11 of [Poo11].

Proposition 3.3.8. We have the following inclusion:

X(k) ⊆ X(Ak)Br(X) ⊆ X(Ak)

Proof. The only non trivial inclusion is the first one. But this follows from the commutativity of the diagram

X(k) X(Ak)

Br(k)
⊕

v∈Ωk
Br(kv)

and the exact sequence of Theorem 1.1. �

Remark 3.3.9. The two previous results implies that the closure of the diagonal image of X(k) via the
diagonal embedding in the adelic points is contained in X(Ak)Br(X).

Remark 3.3.10 (Functoriality). Let f : X → Y a k-morphism of smooth geometrically integral k-variety.
Give A ∈ Br(X) and (Pv) an adelic point of Y , we have∑

v∈Ωk

invv(f
∗A(Pv)) =

∑
v∈Ωk

invv(A(f(Pv)))

It follows
Y (Ak)Br(Y ) = ∅ ⇒ X(Ak)Br(X) = ∅.

Now, if the set X(Ak)Br(X) is empty of course the variety will not have rational point.

Definition 3.3.11. We will say that for a variety X the only obstruction to Hasse principle is given by the
Brauer-Manin obstruction or some similar sentence if X(Ak)Br(X) 6= ∅ implies X(k) 6= ∅.

This propriety is weaker than Hasse principle (add examples).
We also introduce some other notation:

Definition 3.3.12. We will say that for a proper variety X the only obstruction to weak approximation is
given by the Brauer-Manin obstruction if X(k) is dense in X(Ak)Br(X). If X is any variety and S is a finite
subset of Ωk we will say the only obstruction to strong approximation off S is given by the Brauer-Manin
obstruction if X(k) is dense in the image of X(Ak)Br(X) in X(ASk ).

We will see in the last talk some examples of varieties satisfying these properties.
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3.4. Introduction to descent theory.

3.4.1. Hochschild Serre and filtration of the Brauer group. We recall Hochschild Serre spectral sequence.
If X is

Ep,q2 = Hp(k,Hq(X,Gm))⇒ Hp,q(X,Gm).

The spectral sequence is a Grothendieck spectral sequence, respect to the composition of the two functors:

Sh(két).

Sh(Xét) Ab

Γ(X,−) M →MΓk

Γ(X,−)

The fact that the first functor sends injective sheaves to acyclic sheaves is subtle. Let I an injective étale
sheaf on X , for any finite extension L/k let’s call XL := X ⊗ L, then we can check that

Ȟi
(XL → X, I(XL)) = H i(Gal(L/k), I(XL))

just verifying that the two standard complexes used to compute them are isomorphic. As I is injective as
sheaf it is even injective in the category of presheaves, thus Ȟi

(XL → X, I(XL)) are zero when i ≥ 1.
In virtue of the convergence of the spectral sequence, for any Hn there is a filtration

0 = Fn+1Hn ⊆ · · · ⊆ F 0Hn = Hn

such that Ep,q∞ ' F pHp+q/F p+1Hp+q. We notice that H2 = Br(X), we will call Br0(X) the group F 2H2

and Br1(X) the group F 1H2. We have an exact sequence

0→ Br1(X)→ Br(X)→ E0,2
∞ ,

and
E0,2
∞ ↪→ E0,2

2 = H2(X,Gm)Γk .

This implies that Br1(X) = Ker(Br(X)→ Br(X)). We also have the exact sequence

0→ Br0(X)→ Br1(X)→ E1,1
∞ = E1,1

3 = Ker(E1,1
2 → E3,0

2 ).

At the end we obtain the exact sequence

0→ Br0(X)→ Br1(X)
r−→ H1(k,Pic(X))→ H3(k,Gm).

Were r is the map defined by the spectral sequence.
Notice that when k is a number fields the last term is 0 by a not trivial result of Class Field Theory, so

this last exact sequence simplifies. You can even notice that the last exact sequence can be fit in a long exact
sequence

0→ Pic(X)→ Pic(X)Γk → Br(k)→ Br1(X)
r−→ H1(k,Pic(X))→ H3(k,Gm)

For any λ ∈ HomΓk(M,Pic(X)) we define

Brλ(X) := r−1λ∗(H
1(k,M)).

As is proven in ([Ser97], I.2.2,Cor. 2) we have

H1(k,Pic(X)) =
⋃

λ: M↪→Pic(X)
M of finite type

λ∗(H
1(k,M)).

So we have

(3.7) Br1(X) =
⋃

λ: M↪→Pic(X)
M of finite type

Brλ(X).
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3.4.2. The main theorem. We have developed all the tools to talk about Colliot-Thélène and Sansuc descent
Theory. The main goal is to show that for certain classes of k-varieties (k will always be a number field),
the Brauer-Manin obstruction explains the failure of Hasse principle or weak approximation. To do this we
use a description of the sets X(Ak)Brλ(X) with the help of the adelic points of torsors of type λ. We will see
briefly how to apply this method to tori smooth compactifications.

The following theorem was proven for torsors under tori by Colliot-Thélène and Sansuc in 1979 and
generalized by Skorobogatov in 1999 for torsors under groups of multiplicative type. The proof is really
long and we will see it during next talks. Let’s enunciate it:

Theorem 3.4.1 (Colliot-Thélène, Sansuc, Skorobogatov). Let k be a number field, X a smooth, geometri-
cally integral k-variety such that k[X]∗ = k

∗
, then for any λ ∈ HomΓk(Ŝ,Pic(X)),

X(Ak)Brλ(X) =
⋃

type(f,Y )=λ

f(Y (Ak)).

Moreover ifX is proper there are only finitely many classes of isomorphism of torsors Y of a certain type
such that Y (Ak) 6= ∅.

The theorem is often used when Pic(X) is of finite type and λ is an isomorphism. In this situation we
have

X(Ak)Br1(X) =
⋃

(f,Y ) universal

f(Y (Ak)),

because Brλ(X) = Br1(X) when λ is surjective. In particular the algebraic Brauer-Manin obstruction is
empty if and only if there exists an universal torsor with an adelic point.
If Pic(X) is not of finite type, by 3.7 we have

X(Ak)Br1(X) =
⋂

λ: M↪→Pic(X)
M of finite type

⋃
type(f,Y )=λ

f(Y (Ak)).

We can easily check the following corollary, recalling that the subsets X(Ak)Brλ(X) are closed in X(Ak).

Corollary 3.4.2. For X as in the theorem (not necessarily proper) and for any λ ∈ HomΓk(Ŝ,Pic(X)), if
theX-torsors of type λ satisfy Hasse principle, then the only obstruction to Hasse principle forX is the one
given by Brλ(X), i.e. X(Ak)Brλ(X) 6= ∅ ⇒ X(k) 6= ∅.
Furthermore if X is proper, for any λ ∈ HomΓk(Ŝ,Pic(X)), if the X-torsors of type λ satisfy weak
approximation, then the only obstruction to weak approximation for X is the one given by Brλ(X), i.e.
X(k) = X(Ak)Brλ(X).

As an application one can proof the following theorem.

Theorem 3.4.3. Let k be a number field,X a smooth, proper k-variety that contains a k-torsor under a torus
U as a dense open subset. The Brauer-Manin obstruction to the Hasse principle and weak approximation is
the only one.

We will not give the proof because we need the local description of torsors. The idea is to show that in this
situation the universal torsors are k-rational. We can do this studying their restriction to the open U , using
the fact that Pic(U) = 0. Then, as k-rational varieties satisfy weak approximation, thanks to Corollary 3.4.2
we are done. For a proof look Skorobogatov’s book [Sko01], Theorem 6.3.1.

In the case when X is not proper but we only knows that k[X]∗ = k
∗
, we can again use descent theory

to prove that strong approximation off one place with Brauer-Manin obstruction holds as it’s showed in the
article of Wei [Wei14].

The fact that universal torsors are k-rational gives us another interesting tool. Since the variety we are
considering is proper, thanks to theorem 3.4.1 there is only a finite number of classes of isomorphism
of universal torsors. Finally the set of rational points of the variety we are considering has a quite good
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description. It is a finite disjoint union of subsets, each one parametrized by rational points of a certain
k-rational variety.
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4. TALK 4: DESCENT THEORY AND POITOU-TATE PAIRING, GREGORIO BALDI

In this section k will denote a number field. If M = G(k) is a Γk-module coming from a commutative
algebraic k-group G, we will denote H i(Γk, G) = H i(Γk, G(k)). (This will be used in the last section).

In the previous talk we discussed the main result of descent theory: it is possible to describe the adelic
points orthogonal to Brλ of a variety X , under some reasonable assumptions, in terms of the adelic points
of the X-torsors of type λ. Today we will prove the existence of a torsor, given an adelic point orthogonal
to (a subgroup of) Brλ.

In the first part of the talk we will explain the notation and a generalization of the following deep result.
The proof can be found in [Har12], Theorème 8.28.

Theorem 4.1 (Poitou-Tate). Let S ⊂ Ωk containing the archimedean places, let kS be the maximal unram-
ified outside S extension of k contained in k and let GS be the Galois group of kS over k. For any finite
Γk-module M (whose cardinality is invertible in Ok,S) we have:

i) For i ≥ 3, H1(GS ,M) ∼=
⊕

v realH
i(kv,M), in particular Шi

S(k,M) = 0.
ii) There is a nine terms exact sequence

0 H0(GS ,M)
∏
v∈S H

0(kv,M) H2(GS ,M
D)D

H1(GS ,M
D)D P1

S(k,M) H1(GS ,M)

H2(GS ,M)
⊕

v∈S H
2(kv,M) H0(GS ,M

D)D 0

Moreover, dualizing everything, one obtains the same sequence with M and MD interchanged.
iii) The groups Ш1

S(k,MD) and Ш2
S(k,M) are finite and duals.

Remark 4.2. In this talk we will deal just with the case S = Ωk and so we will not discuss here the more
general case with an arbitrary S, for this details we remand to the notes.

Even to define P.T. pairing we will need the following fact from class field theory.

Theorem 4.3. Let k be a global or a local field, then H3(k, k
∗
) is zero.

4.1. Group Cohomology and Шi(k,M).

4.1.1. Cup product. Notation: Let G be a profinite group, Ci(G,M) is the group of continuous i-cochains
ofG with coefficients in a discreteG-moduleM and let Zi(G,M) andBi(G,M) defined as usual. Usually
Gwill be the absolute Galois group of a number field k and we will denoteH i(k,M) = Zi(Γk,M)/Bi(Γk,M).

First of all we recall some generalities about the cup product in group cohomology. Let A,B be G-
modules and consider the G-module A ⊗ B(:= A ⊗Z B) with the action given by g.(a ⊗ b) = g.a ⊗ g.b.
This induce naturally a bilinear application at the level of continuous cochains

∪ : Cp(G,A)× Cq(G,B)→ Cp+q(G,A×B) with p, q ∈ N

given by a ∪ b : (g1, . . . gp+q)→ a(g1 . . . gp)⊗ b(gp+1, . . . , gp+q). By direct computation we have

d(a ∪ b) = da ∪ b+ (−1)p(a ∪ db)

and so it gives a bilinear application in cohomology:

∪ : Hp(G,A)×Hq(G,B)→ Hp+q(G,A×B) with p, q ∈ N

This is enough to define the cup product associated to any bilinear2 application A×B → C since it can be
factored through A⊗B.

2Not assumed to be G invariant, indeed we are considering the tensor product between A and B as abelian groups.
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Achtung. From now on we will consider the cup product associated to the valuation

Hom(M,k
∗
)×M → k

∗

where M is a discrete Γk-module.

4.1.2. Poitou-Tate Pairing. Conventions. In what follows we have assumed the same conventions as in
[Har06].

Let M be a discrete Γk-module, if v is a place of k we denote with Γv the absolute Galois group of the
completion kv. Notice that it can be identified with a subgroup (the decomposition group) of Γk. For every
Γk module M , for any place v of k, one obtain an application of restriction H i(Γk,M) → H i(Γv,M). A
priori this application depends on the choice of an algebraic closure of kv (which, in general, is different
from the one of k) and of the embedding k ↪→ kv, but it is always possible to make a choice such that
the induced maps induced on cohomology is exactly the restriction. Notice that, even if the decomposition
group is defined up to conjugation, the induced map on cohomology is uniquely determined.

Achtung (A subtle point). If G is an algebraic commutative k-group we have a restriction application
H i(k,G)→ H i(kv, G) induced by the inclusion G(k) ⊂ G(kv) and the arrow Γkv ↪→ Γk which, as above,
identifies Γkv as a decomposition subgroup of Γk (for v finite). This differs from the restriction on the action
of Γkv to G(k). To get rid of this problem one can work with the henselianization of k in v, which is still
contained in k, instead of the completion to avoid the problem of having a different algebraic closure. This
will give us essentially the same duality theorems. For what follows that assumption is not mandatory and
we will still consider H i(kv, T ) as the k-points of T with the action of Γv by restriction (we will solve that
problem, for example, thanks to the Rosenlicht’s Lemma).

Achtung. In what follows H i(kv,M) will always denote H i(Γv,M) except the case v is archimedean and
i = 0; in this case there are different conventions and we will mean the modified Tate group.

We say that M , a discrete Γk-module, is not ramified if the action of the inertia group on M is trivial, i.e.
the quotient Gal(knr/k) acts onM . We say thatM is not ramified in v, a finite place of k, if it is not ramified
w.r.t. the action of Γv onM , under this assumption we defineH i

nr(kv,M) as the image ofH i(k(v),M) into
H i(kv,M), where k(v) denotes the reside field of v. We have H0

nr(kv,M) = H0(kv,M), H1
nr(kv,M) =

H1(k(v),M) and H2
nr(kv,M) = 0 whenever M is a torsion module3. (For v archimedean we define

H i
nr(kv,M) simply as H i(kv,M)).
Equivalently one can say H i

nr(k,M) = H i(Gal(knr/k),M), see the end of chapter 7 of Harari’s Notes.
Recall also the following result:

Theorem 4.1.1. knr is a C1 field, in particular its Brauer Group is zero.

Definition 4.1.2. Let M be a discrete Γk-module of finite type (as abelian group). Then M is not ramified
(up to a finite number of places) and so we can define Pi(k,M) as the restricted product of the H i(kv,M)
w.r.t. H i

nr(kv,M), i.e. the elements are (xv)v∈Ωk with xv ∈ H i(kv,M) for any v and xv ∈ H i
nr(kv,M)

for almost every v.

We have
- P0(k,M) =

∏
vH

0(kv,M). If M is finite then it is compact (since H0(kv,M) is finite) .
- P1(k,M) inherits the topology of the restricted product: H1(kv,M) are discrete and a base of open

neighbourhood of 0 is given by
∏
H1
nr(kv,M) for almost every v. Since M is of finite type then

P1(k,M) is locally compact (since H1(kv,M) is torsion and finitely generated)

Notation. For a finitely generated module M we write Md for the sub-module Hom(M,knr∗) of MD =
Hom(M,ksep∗). If M is finite then MD is finite and MDD is canonically isomorphic to M .

Lemma 4.1.3. Let M be a Γk-module of finite type, then the image of

H i(k,M)→
∏
v∈Ωk

H i(kv,M)

is contained in Pi(k,M). The result is true also with Md, see Proposition (8.6.1) of [SN86].
3Because cdp(Ẑ) = 1 for any p and the theorem 3.14 of Harari’s Notes.
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Definition 4.1.4. Let M be a discrete Γk-module we define

Шi(k,M) = Ker

H i(k,M)→
∏
v∈Ωk

H i(kv,M)


The definition, in general, makes sense also with Md.

Thanks to the Lemma, if M is finitely generated then we have

Шi(k,M) = Ker(H i(k,M)→ Pi(k,M))

and also, thanks to the second part of the Lemma, we have

Шi(k,Md) = Ker(H i(k,Md)→ Pi(k,Md))

We state the Theorem 4.20 of [Mil06].

Theorem 4.1.5 (Poitou-Tate). Let M be a Γk module of finite type, then
- The group Ш2(k,Md) is finite and is dual to Ш1(k,M).
- There exists a six terms exact sequence of continuous homomorphisms, analogous to the one of

Theorem 4.1.
- For i ≥ 3 there is an isomorphism

H i(k,Md)→
∏
v real

H i(kv,M)

Achtung. Pay attention to the proof in Milne’s Book!

Remark 4.1.6. The proof of this theorem, which is highly non trivial, does not use the explicit description
of the pairing. But it can be shown that it coincide with the pairing we are going to describe in terms of
cocyles.

We end this section with the explicit construction of the global Poitou-Tate pairing. For any Γk-module
M of finite type we define

〈·, ·〉 : Ш2(k,Hom(M,k
∗
))×Ш(k,M)1 → Q/Z

• Let β = [b] with b ∈ Z2(Γk,M
d) and α = [a] with a ∈ Z1(Γk,M), then b ∪ a is an element

of Z3(Γk, k
∗
) which is equal to B3(Γk, k

∗
) because k is a number filed. And so we can write

b ∪ a = dh for some h ∈ C2(Γk, k
∗
)

• By hypothesis the restriction of b to Γv, for any place v, is trivial; hence it has the form dξv for some
ξv ∈ C1(Γv,M

d)

• By definition of h we have ξv ∪a−h ∈ Z2(Γv, k
∗
) (dh is just the restriction of b). Let εv ∈ Br (kv)

be its class, we define
〈β, α〉 :=

∑
v∈Ωk

invv(εv) ∈ Q/Z

where the sum is finite because thanks to the previous Lemma and the fact that the Brauer Group of
a C1 field is zero.

It is easy to see that the element we defined is independent of the choices made. Moreover the pairing can
be defined even for arbitrary Γk-modules but we do not have such an explicit description (the sum is not
finite) and the non degeneracy of the pairing.

More over we will need also another version of the global Poitou-Tate paring. For this we follow [SN86].
Namely the theorem (8.6.8) of page 421.

Theorem 4.1.7. Let M be a finitely generated Γk-module, then there exists a perfect pairing

Ш1(Γk,M
d)×Ш2(Γk,M)→ Q/Z

of finite groups, which is induced by the cup product.

Also this pairing can be defined explicitly for any module M as we did before.
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4.2. Descent theory. We make the following assumptions:
• k a number field,
• X is a smooth, geometrically integral k-variety,
• Pic(X) is of finite type,
• X(Ak) is not empty,
• k∗ = k(X)∗ (this assumption will be dropped in the section about tori)
• M is a Γk-module of finite type, and λ : M → Pic(X) it’s type,
• S is the k-group (of multiplicative type) such that M = Ŝ.

Achtung. The assumption about the Picard group is not made in the book of Skorobogatov but is necessary
for the lemma we are going to prove. It is not clear how to fix our proof in order to drop this assumption. . .

4.2.1. Statement of the Main Lemma. Recall the theorem of Colloit-Thélène and Sansuc.

Theorem 4.2.1. The class of −e(x) ∈ Ext2
k(Pic(X, k

∗
)) coincides with the class of the following 2-fold of

Γk-modules
0→ k

∗ → k(X)∗ → Div(X)→ Pic(X)→ 0

We have the following implication: X(k) 6= ∅ ⇒ e(x) = 0⇔ k
∗ → k(X)∗ has a Γk-equivariant section.

We state now the main Lemma we are going to prove.

Lemma 4.2.2. e(x) can be interpreted as an element bX ∈Ш2(k,Hom(Pic(X), k
∗
)).

For any adelic point (Pv) and α ∈Ш1(k,M) we have the following equality between the BM pairing and
the PT pairing

〈bX , λ∗(α)〉 =
∑
v∈Ωk

invv(A(Pv))

where A ∈ B(X) is such that r(A) = λ∗(α)

Recall that from the low degree terms of the Hochschild-Serre we have the exactness of the following
sequence:

0→ Pic(X)→ Pic(X)Γk → H2(k, k
∗
)→

→ Ker(Br (X)→ Br
(
X
)
)
r−→ H1(k,Pic(X))→ H3(k, k

∗
) = 0

And we defined
Br0(X) = Im(Br (k)→ Br (X))

Br1(X) = Ker(Br (X)→ Br
(
X
)
)

B(X) = {[A] ∈ Br1(X) s.t. when seen in Br1(Xv) are in Br0(kv) ∀v}
Thanks to the map λ : M → Pic(X) we obtain λ∗ : H1(k,M)→ H1(k,Pic(X)), we can define

Brλ(X) := r−1(λ∗H
1(k,Pic(X)))

Notice that it make sense to ask for the existence of an element A ∈ Br1(X) such that

r(A) = λ∗(α)

as in the statement of the lemma, because here r is surjective and α is locally trivial, by definition, and so A
lives in B(X).

4.2.2. The existence of a torsor of type λ. Thanks to the comparison between the two paring we are now
ready to prove the hardest part of the Main Result on descent theory.

Theorem 4.2.3. If there exists an adelic point (Pv) orthogonal (w.r.t. the BM paring) to r−1(λ∗(Ш1(k,M))) ⊂
Brλ(X) then there exists a torsor f : Y → X of type λ.

Proof. By the fundamental exact sequence of C.T.-S. we know that there exist an X-torsor of type λ under
S if and only if the image of λ, ∂(λ) = λ∗(e(X)) ∈ H2(k, S) = Ext2

k(M,k
∗
) is zero.

The functoriality of the P.T. pairing (which makes sense even if Pic(X) is not of finite type) associated
to λ can be displayed as the commutativity of
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Ш2(k,Hom(M,k
∗
)) × Ш1(k,M) Q/Z

Ш2(k,Hom(M,k
∗
)) × Ш1(k,Pic(X)) Q/Z

λ∗ λ∗

Hence, for any adelic point (Pv) as in the lemma and any α ∈Ш1(k,M) we have

0 =
∑
v

invv(A(Pv)) = 〈bX , λ∗(α)〉 =

(by the Main lemma)
= 〈λ∗bX , α〉 =

(by functoriality)
= 〈λ∗(e(X)), α〉 = 〈∂(λ), α〉 = 0

and this implies ∂(λ) = 0 by the non degeneracy of the P.T. pairing applied toM , which is of finite type. �

4.3. Proof of the Lemma.

Reference 4.3.1. Here we present a (quite long) proof using explicit cocyle computation. A modern ap-
proach can be found in [HS10].

Step 0: understanding the map r
We want to represent the map r : Br1(X) → H1(k,Pic(X)) and to show that if A ∈ B(X), then r(A)
lives in Ш1(k,Pic(X)). To do this we assume the existence of the following commutative exact diagram4

Br (k) Br1(X) H1(k,Pic(X))

H2(k, k(X)∗) H2(k, k(X)∗) 0

H1(k,Pic(k)) H2(k, k(X)∗/k) H2(k,Div(X))

r

=

π div∗

Where the firs line is from H.S., the first column is induced by the sequence 1 → k
∗ → k(X)∗ →

k(X)∗/k
∗ → 0 and the bottom line comes from → k(X)∗/k

∗ → Div(X) → Pic(X) → 0. In par-
ticular the map from H1(k,Pic(X)) to H2(k, k(X)∗/k

∗
) is injective because H1(k,Div(X)) = 0 (as

always: it is a permutation module and so we can apply Shapiro and Hilbert’s 90).
Taking the class of an element A in Br1(X) we have

A

(fst) ∈ Z2(Γk, k(X)∗) (fst) ∈ Z2(Γk, k(X)∗)

class(D) π(fs,t) dD = div(f) = 0

=

π div∗

4For the proof see chapter 4 of [Sko01].
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where class(D) is a well defined (thanks to the injectiveness discussed above) element of Z1(Γk,Pic(X)).
Thanks to “the shape” of the diagram one can prove the following equality:

class(D) = −r(A) ∈ H1(k,Pic(X))

This is a purely homological algebra diagram chasing, for the proof see Lemma 4.3.2. of Skorobogatov’s
Book.
Step 1: a very useful remark
Consider the following commutative (by the definition of the action on the hom-sets) diagram:

Γk −mod.

Γk −mod Ab

Hom(−, k∗) M 7→MΓk

Homk(−, k∗)

Where Hom(−, k∗) is the Γk module of group map to k
∗
. Since k

∗
is injective as Z-module we have the

following relation between total derived functors:

(R(−)Γk) Hom(−, k∗) ∼= R(Homk(−, k
∗
))

In particular, taking the cohomology, we obtain the following isomorphism (give by the snake lemma)

H i(k,Hom(Pic(X), k
∗
)) ∼= Extik(Pic(X), k

∗
)

Moreover, for i = 2, this isomorphism maps bX to e(X).

Achtung. Notice that we proved something similar when we discussed the fundamental exact sequence
of C.T.-S. (in the previous talk). But this result applies without any assumptions on the Γk-module, in
particular even if Pic(X) is not of multiplicative type. Moreover here we obtain an explicit description of
the isomorphism, and this will be essential to carry on our proof with cocyles.

Step 2: Representation of bX
We argue as in the theorem of C.T.-S. about the representation of the elementary obstruction, because we
want to understand the cohomology class of bX in terms of a 2-cocyle.

The proof relies on the following remark: The Yoneda pairing

Ext1
k(Div0(X), k

∗
)
∂−→ Ext2

k(Pic(X), k
∗
)

sends the inverse of class of the extension 1→ k
∗ → k(X)∗

div−−→ Div0(X)→ 0 to the class of 1→ k
∗ →

k(X)∗ → Div(X) → Pic(X) → 0. Hence it is enough to give a description in terms of cocyles of the
first extension, as element of H1(k,Hom(Div0(X), k

∗
), and to follow the construction of the connecting

homomorphism
H1(k,Hom(Div0(X), k

∗
)
∂−→ H2(k,Hom(Pic(X), k

∗
))

Choose P ∈ X(k) and let OX,P be the local ring of X at P . We have a section of the inclusion
k
∗
↪→ OX,P given by the association g 7→ g(P ). Moreover the sequence of abelian groups

1→ OX,P → k(X)∗ → DivP (X)→ 0

is split, since DivP (X) is projective. This gives a section (of groups) from k(X)∗ to OX,P , by composition
we obtain a section

eP : k(X)∗ → k
∗

which, if g is invertible at P can be expressed by the association g 7→ g(P ). Notice that if P is a k-point,
i.e. P = P ∈ X(k), then the section eP can be made Γk-equivariant.

Consider the extension
1→ k

∗ → k(X)∗
div−−→ Div0(X)→ 0

and the map
σP : Div0(X)→ k(X)∗, div(g) 7→ g

eP (g)
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This map of groups is a well defined section of div since g is uniquely determined up to scalar multiplication
and this problem is eliminated by taking the ratio. From σP ∈ C0(Γk,Hom(Div0(X), k(X)∗)) we obtain
dσP ∈ B1(Γk,Hom(Div0(X), k(X)∗)) given by

dσP : a 7→
a · σP
σP

=
σa·P
σP

hence dσP is an element of Z1(Γk,Hom(Div0(X), k
∗
)). Notice that we are just following the proof of the

snake lemma, and so was not necessary to prove the last assertion.
By construction the class of dσP ∈ H1(k,Hom(Div0(X), k

∗
)) corresponds to the inverse of the exten-

sion
1→ k

∗ → k(X)∗
div−−→ Div0(X)→ 0

where we changed sign because of the relation

σP (div(−)) + eP (−) = Idk(X)∗(−)

(The assertion “by construction” should be clear: eP is a section of the map k
∗ → k(X)∗ which lives in the

preimage of the identity when you apply the functor Hom(,k
∗
).) We are almost done, following the strategy

explained at the beginning: With the following exact sequences in mind

0→ Div0(X)→ Div(X)→ Pic(X)→ 0

0→ Hom(Pic(X))→ Hom(Div(X), k
∗
)→ Hom(Div0(X), k

∗
)→ 0

we do a bit of diagram chasing: by injectivity of k
∗

we extend dσP to an elementψP ∈ C1(Γk,Hom(Div(X), k
∗
)),

and we obtain dψP ∈ B2(Γk,Hom(Div(X), k
∗
)) whose restriction to Div0(X) is d2σP = 0. And so we

have dψP ∈ Z2(Γk,Hom(Pic(X), k
∗
)), which is the element that represents the class of −bX .

Step 3: P.T. pairing, global factor
Since X(Ak) 6= ∅ we have that e(X) goes to zero under the restrictions from k to kv for all places v (we
have a Γv-equivariant section), and so bX belongs to Ш2(k,Hom(Pic(X), k

∗
)).

To finish the proof we have to compute the P.T pairing

Ш2(k,Hom(Pic(X), k
∗
))×Ш1(k,Pic(X))→ Q/Z

of 〈bX , r(A)〉 but, thanks to the previous steps, we have bX = −dψP and r(A) = −class(D), so it is
enough to compute the pairing 〈dψP , class(D)〉. With the notation of Step 0 we define

h := ψP ∪D − eP ∪ f ∈ C
2(Γk, k

∗
)

since, by direct computation, we have dh = dψP ∪D, as wanted.

Step 4: P.T. pairing, local factor
We notice that the support of div(fs,t) is “small”: fs,t are continuous map from Γk × Γk (with the profinite
topology) to k(X)∗ (with the discrete one), since the image of a compact in a discrete space is finite we
have that div(fs,t) is supported by finitely many principal divisors. By the implicit function theorem (X is
smooth) we can choose Pv ∈ X(kv)away from div(fs,t) for any place v.

As in Step 2 we consider the Γv-equivariant map σPv , and we define

θv : Div0(X)→ k
∗
v

as the composition of the inclusion of Div0(X) in Div0(Xv) and the map σP
σPv

: Div0(Xv)→ k
∗
v. Whenever

g ∈ k(X)∗ is invertible at P and Pv we can write

θv(div(g)) =
g

g(P )

g(Pv)

g
=
g(Pv)

g(P )

(if not this still make sense but we do not have an explicit description).
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Since σPv is equivariant we have dσPv = 0 and so, by the derivation rule, d(σv) is the “restriction” of
dσP ∈ Z1(Γk,Hom(Div0(X), k

∗
)) to kv. As above k

∗
v is an injective abelian group and so θv : Div0(X)→

k
∗
v extends to a map

µv : Div(X)→ k
∗

Our candidate for the local factor is

ξv := ψP − dµv ∈ C
1(Γv,Hom(Div(X), k

∗
v))

As in Step 0 ξv is trivial on Div0(X):
- the restriction of ψP to Div0(X) is dσP
- the restriction of dµv to Div0(Xv) is dσv which is the restriction of dσPv .

Hence ξv belongs to C1(Γv,Hom(Pic(X), k
∗
v)). Moreover dξv is just the restriction of dψP (↔ −bx) to Γv

( since dξv = dψP − ddµv). As claimed ξv is our local factor.

Step 5: last computation
We define εv ∈ Br (kv) as the class of the cocyle

ξv ∪ class(D)− h = ψP ∪D − dµv ∪D − ψP ∪D + eP ∪ f =

= eP ∪ f − dµv ∪D = −d(µv ∪D) + µv ∪ dD + eP ∪ f
Hence εv can be also represented by θv ∪ div(f) + eP ∪ f . But now we know how to compute them:

σv ∪ div(f) =
ePv(f)

eP (f)
, and eP ∪ f = eP (f)

Thanks to our choice of the Pvs we can write that εv is the class of f(Pv) = fs,t(Pv). We proved

invv(ξv ∪D − h) = invv(A(Pv)), with A = (fs,t).

4.4. Torsor under tori.

4.4.1. Groups of Multiplicative type. Recall that a group of multiplicative type S over k is a commutative
linear k-group which is an extension of a finite group by a torus. The module of characters of S is the
abelian group Ŝ = Hom(S,Gm), equipped with the action of the Galois group Γk.

We state here some results we used many times during this Workshop.

Theorem 4.4.1 (Rosenlicht’s Theorem). Let X,Y be geometrically irreducible k-varieties, then k[X]∗/k
∗

is a free abelian group of finite rank and there is an isomorphism of groups

k[X ×k Y ]∗/k
∗ ∼= k[X]∗/k

∗ × k[Y ]∗/k
∗

Theorem 4.4.2. Let G be a k-group. The association G Ĝ gives an equivalence of category between the
category of k groups of multiplicative type and the category of discrete Γk-modules of finite type. Moreover
a sequence of groups of multiplicative type is exact iff the dual of Γk-modules of characters is exact.

4.4.2. The only obstruction to the Hasse principle. Let G be an algebraic group of the following list
(1) a torus,
(2) a semisimple group,
(3) an abelian variety.

Then for G-torsors under X the only obstruction to the Hasse principle is the one attached to B. In this
situation, following the proof of the Main Lemma, one obtain a simplified relation between the adelic Manin
pairing and the P.T. pairing using, in the corresponding situations, the following facts:

(1) “Γk-equivariant” Rosenlicht’s Theorem, i.e. the exactness of

1→ k
∗ → k[X]∗ → Ĝ→ 0.

(2) The exact sequence
1→ F → Gsc → Gss → 1

and the bijection H1(k,Gsc) ∼=
∏
v realH

1(kv, G
sc) of the Kneser-Harder-Chernousnov’s Theo-

rem.
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(3) The Cassel-Tate pairing:
Ш(S)×Ш(St)→ Q/Z.

Today we will discuss just the first case, the theory of semisimple groups will be discussed in the two talks
of Professor Harari (see the next section), with many generalisations and the case of abelian varieties is
described in the last section of the notes.

As stated above our main goal is to prove the following.

Theorem 4.4.3. Let X be a torsor under a torus T , then the Manin obstruction related to B(X) is the only
obstruction to the Hasse principle.

Achtung. We drop the assumption k
∗

= k[X]∗.

Thanks to the result of Rosenlicht we have

T̂ = k[T ]∗/k
∗ ∼= k[X]∗/k

∗

where the last isomorphism is given because, over k, X and T are isomorphic (the category of torsors
is a groupoid!). It is quite easy to show that it does not depend on the choice of a k-point and that it is
Γk-equivariant: we can represent X as a cocyle c ∈ Z1(Γk, T (k)) such that the action of g ∈ Γk on
s ∈ T (k) = X(k) is given by

g(s) = c(g) ·g s

Moreover the action of s ∈ T (k) on k[T ]∗/k
∗

= T̂ is just the character multiplied by its value in s, hence it
is trivial.

This gives the exactness of

1→ k
∗ → k[X]∗

γ−→ T̂ → 0

as Γk-modules.

Achtung. Thanks to Rosenlicht we also have that T̂ = k[X]∗/k
∗

= kv[X]∗/k
∗
v.

Lemma 2.4.3 Skorobgatov ensures that the class of such extension in Ext1
k(T̂, k

∗
) corresponds to the

class of −[X] in H1(k, T ).
Consider the low degree exact sequence from the H.S.

Pic(X)Γk → H2(k, k[X]∗)→ Br1(X)→ H1(k,Pic(X))→ H3(k, k[X]∗)

Since Pic(T ) = Pic(X) = 0 we get Br1(X) ∼= H2(k, k[X]∗). Moreover the long exact sequence induced
by 1→ k

∗ → k[X]∗
γ−→ T̂ → 0 gives

Br (k)→ H2(k, k[X∗]) = Br1(X)→ H2(k, T̂ )→ H3(k, k
∗
) = 0

Thanks to the surjectivity of the last map we obtain an isomorphism

i : B(X)/Br0(X) ∼= Ш2(k, T̂ )

and this isomorphism allows as to state the “comparison lemma” between the two pairing.

Lemma 4.4.4. Let k be a number field andX a k-torsor under the action of a torus T such thatX(Ak) 6= ∅.
Then the class of X in H1(k, T ) belongs to Ш1(k, T ). Let A ∈ B(X), for any adelic point (Pv) we have
the following equality: ∑

v∈Ωk

invv(A(Pv)) = −〈[X], i(A)〉.

Achtung. Notice that there the pairing of the LHS is not exactly the P.T. pairing of the previous section, but
it is the one Theorem 4.1.7. This will not be a big problem since it has a very similar description in terms of
cocyles (as proved in Neukirch’s Book). Both of them are not degenerate!
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Proof of the Theorem. From the equation between the pairings we get that the Manin obstruction attached
to B(X) is the only one:

X(Ak)B(X) 6= ∅ ⇒ X(k) 6= ∅
Indeed, given (Pv) such that

∑
v∈Ωk

invv(A(Pv)) = 0 for any A ∈ B(X) we have

−〈[X], i(A)〉 = 0, ∀A ∈ B(X)

and the non degeneracy of (the second) P.T. pairing this implies [X] = 0 and so there exists a rational point
(if we see X in Ext1

k(T̂, k
∗
) it corresponds to a Γk-equivariant section). �

Proof of the Lemma. The Proof is essentially the same of the other “comparison lemma” but more easy: one
considers the two group sections

eP : k[X]∗ → k
∗

σP : T̂ → k[X]∗

We have σP (γ(−)) + eP (−) = 1 and so dσP = −deP and dσP represents, in Ext1
k(T̂, k

∗
) the class of

1→ k
∗ → k[X]∗

γ−→ T̂ → 0 (following the proof of the snake lemma), which corresponds −[X].
To describe explicitly the pairing 〈[X], i(A)〉 with A = (fs,t) ∈ Z2(Γk, k[X]∗) we define

h = −eP ∪ f = f(P )−1

because dh = −deP ∪ f = dσP ∪ f . The local factor is just

σv : T̂ → k
∗
v, γ(g) 7→ g(Pv)

g(P )

σPv is Γv-equivariant, hence dσPv = 0. Thanks to this we have that dσv ∈ Z1(Γv,Hom(T̂, k
∗
v)) is the

restriction to kv of the cocyle dσP , whose class in H1(k,Hom(T̂, k
∗
)) is −[X]. We are done since εv

corresponds to the class of

σv ∪ γ(f)− h = σv ∪ γ(f) + eP ∪ f =
f(Pv)

f(P )
+ f(P ) = f(Pv).

�
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5. TALK 5: WEAK APPROXIMATION ON LINEAR GROUPS, PROFESSOR HARARI

Notes taken by Gregorio Baldi

5.1. Weak approximation on tori.

5.1.1. Statement of the main theorem. Let k be a number field, T a torus and T̂ the Galois module of its
characters. T (k) is defined as the closure of T (k) into

∏
v∈Ωk

T (kv) with the direct product topology. And

T (k)
S

the closure inside
∏
v∈S T (kv) (S finite set of places).

Recall the Tate’s local pairing (given by cup product):

H0(kv, T )×H2(kv, T̂ )→ Br (kv)

whereH0(kv, T ) = T (kv) and Ĥ0(kv, T ) if v|∞. T̂ is not finite and so it induces a duality (perfect pairing)
on the profinite completions of H0(kv, T ) and H2(kv, T̂ ).

This pairing induces a map
∏
v∈Ωk

T (kv)
θ−→Ш2

ω(T̂ )D where

Ш2
ω(T̂ ) = {α ∈ H2(k, T̂ ), αv = 0 ∈ H2(kv, T̂ ) for almost all v}

It contains the usual Ш2(T̂ ). Moreover we will denote

Ш2
S(T̂ ) = {α ∈ H2(k, T̂ ), αv = 0 for v /∈ S} ⊂Ш2

ω(T̂ )

And the map is given by
θ : (tv) 7→ (α 7→

∑
v

(tv, αv)) (Tate Pairing)

it is a sum of finitely many terms by the definition of Ш2
ω.

Theorem 5.1.1 (Voskresenskii, Sansuc). There is an exact sequence

0→ T (k)
i−→
∏
v∈Ωk

T (kv)
θ−→Ш2

ω(T̂ )D →Ш1(T )→ 0

for S finite the sequence becomes

0→ T (k)
S i−→

∏
v∈S

T (kv)
θ−→Ш2

S(T̂ )D →Ш1(T )→ 0

The important part of the sequence are the first three terms.

5.1.2. Consequences.

Theorem 5.1.2.
a) The “defect of W.A.” (=the cokernel of i) is finite. “It almost satisfies WA”.
b) T satisfies “weak weak approximation”= there exists S0 ⊂ Ωf such that T (k) is dense in

∏
v∈S T (kv)

for every finite S s.t. S ∩ S0 = ∅.
c) Let T c ⊃ T a smooth compactification of T , BM obstruction to WA on T c is the only one.

Remark 5.1.3. Part a) is far from being true for abelian varieties: the group that takes in to account the
defect of WA is huge: H1 of the dual abelian varieties. Part c) is hard to translate on a function field: we do
not have resolution of singularities.

Exercise 5.1.4. Projective, not simply connected then the condition b) can not hold.

Proof. a). Ш2
ω(T̂ ) finite? Suppose T is split, i.e. T̂ = Zn. Then

Ш2
ω(Z) = Ш1

ω(Q/Z)

because H2(k,Z) ∼= H1(k,Q/Z) (from the sequence 0→ Z→ Q→ Q/Z). Moreover

Ш1
ω(Q/Z) = 0
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By Chebotarev (Proposition 9.2 of Harari’s notes) and writing Q/Z as limit of finite groups. Take L/k
galois s.t. T splits over L:

Ш2
ω(T̂ ) ⊂ Ker(H2(k, T̂ )→ H2(L, T̂ )) = H2(Gal(L/k), T̂ )

Where the first inclusion is because, by the split case, we have Ш2
ω(L, T̂ ) = 0; and the last equality follows

from the inflation-restriction exact sequence (thanks to the assumption H1(L, T̂ ) = H1(L,Zn) = 0, as in
Corollaire 1.24 of Harari’s Notes). But T̂ is of finite type and so the galois cohomology group is finite. �

b). Ш2
ω(T̂ ) finite and so there exists S0 ⊂ Ωk s.t. for any α ∈ Ш2

Ωk
(T̂ ), αv = 0 for every v /∈ S0. We

conclude since if S ∩ S0 = ∅, then Ш2
S(T̂ ) = Ш2(T̂ ) and so there is no obstruction to W.W.A. outside S0

(by the second exact of the main theorem sequence with such an S). �

c). T ↪→ T c, as in the last section of the previous talk we prove

Ш2
ω(T̂ ) ∼= Br1(T c)/Br (k) 5

We have Pic(T ) = 0 since T ∼= Gn
m. We have the following exact sequence (Rosenlicht’s Lemma)

0→ T̂ = k[T ]∗/k
∗ div−−→ P → Pic(T

c
)→ 0

Where P is the permutation module of divisors at the infinity, and so Br1(T c)/Br(k) ∼= H1(k,Pic(T
c
)).

H1(k, P ) = 0, Ш2
ω(P ) = 0 (Ш2

ω(Z) = 0)

0→ T (k)→
∏

T (kv)
θ−→ (Br1(T c)/Br(k))D

Now we are left to check the compatibility of the BM pairing with θ. See Sansuc. �

�

5.1.3. Proof of the main theorem. a) T = Gm ok, Ш2
ω(T̂ ) = Ш2

ω(Z) = 0 and Gm satisfies WA (it is an
open subset of the affine space). And Ш1(Gm) = 0 by Hilbert’s 90. Moreover it is the same for quasi-trivial
tori, by Shapiro.
b) Ono’s Lemma: T a torus, there exist two quasi-trivial tori R,R′ (i.e. R̂ is permutation module and
R ∼=

∏
Rki|k(Gm) ↪→ Amk ) such that the following is exact

0→ F → R→ Tm ×R′ → 0

with F finite. So we can assume the existence of a sequence

0→ F → R→ T → 0

with R quasi-trivial and F finite. Since if the theorems holds for Tm × R′ then holds also for T , because
taking the powers is not a problem and R′ is quasi trivial and so does not count by the previous step, as
explained by Proposition 1.4.1.
c) S finite contained in Ωk, we have the following exact sequence

H1(k, F )→
∏
v∈S

H1(kv, F )→Ш1
S(F̂ )D

thanks to the proposition at the end of the discussion [this part holds also for F of finite type].
d) From the sequence 0→ F → R→ T → 0 we get a big diagram with exact rows

R(k) T (k) H1(k, F ) H1(k,R) = 0

∏
v∈S R(kv)

∏
v∈S T (kv)

Ш2
S(T̂ )D

∏
v∈S H

1(kv, F )

Ш1
S(F̂ )D

5One could be even more precise: it is equal to Br(T c)/Br (k), because there are not trascendental Brauer classes.
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And the last map between the Sha groups is an isomorphism because H1(k, R̂) = Ш2
S(k, R̂) = 0, by step

a) and the fact that the map is the one induced by 0→ T̂ → R̂→ F̂ → 0.

Remark 5.1.5. The idea is to reduce the statement about torus to the case of a finite group, where we can
apply Poitou-Tate!

By easy diagram chasing and the fact that R(k)
S

=
∏
v∈S R(kv) we get the exactness of

0→ T (k)→
∏
v∈S

T (kv)→Ш2
S(T̂ )D

Moreover, by definition of Ш2
S we have the exactness of

0→Ш2(T̂ )→Ш2
S(T̂ )→

⊕
v

H2(kv, T̂ )

Dualizing, using the iso (Ш2(T̂ ))D = Ш1(T ), given by Poitou-Tate applied to a torus and the isomorphism
given by the Local Tate pairing (?? paying attention to the archimedean places) we get the right cokernel.
e) Recall that Шω is defined as the limit of ШS with S finite. So, taking the limit over S, gives the exactness
of

0→ T (k)→
∏
v∈Ωk

T (kv)→Ш2
ω(T̂ )D

Proposition 5.1.6. Given F a finite Γk-module then the following is exact:

H1(k, F )→
∏
v∈S

H1(kv, F )→Ш1
S(F̂ )D

Proof. By the exact mid three terms of the nine terms exact sequence given by the global Poitou-Tate duality
(as stated at the beginning of the previous section) we have the exactness of

H1(k,M)→ P1
S(k,M)→ H1(k, M̂)D

This implies the exactness of

Ш1
S(M)→

∏
v∈S

H1(kv,M)→ H1(k, M̂)D

Which, applied to M = F̂ and dualizing we obtain

H1(k, F )→
∏
v∈S

H1(kv, F̂ )D →Ш1
S(F̂ )D

The local Tate duality induced by cup product (for finite Γkv -modules) gives us the isomorphism

H1(kv, F̂ )D ∼= H1(kv, F )

Hence the result is proved. �

5.2. Arithmetic of linear algebraic groups.

Reference 5.2.1. The book [VA94] and the article of Sansuc [San81].

5.2.1. A few Remainders. All you have to know about the structure of linear algebraic groups.

k field (of char(k) = 0) [in positive char it is more easy to assume also smoothness].

Definition 5.2.2. A linear algebraic groupG over k which is a Zariski closed ofGLn. EquivalentlyG affine
group scheme over k.

Example 5.2.3. GLn, SLn, PGLn a torus.

Assume G connected.
• Gu = unipotent radical of G. Unipotent group means that one can embed it into the group of

unipotent matrices. Not very interesting for us: U unipotent implies H1(k, U) = 0 as a variety
U ∼= Amk .
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• G/Gu is a reductive group

Assume G reductive, G is an extension

1→ Gss → G→ T → 1

with Gss semi simple. Notice that a semisimple group is equal to its derived subgroup G′ = [G,G], and
this implies Ĝss = 1 character free (Gm is abelian, Hom(G,Gm) = Hom(G/[G,G],Gm) = 0) and so
k[Gss]∗ = k

∗
(by Rosenlicht).

Reference 5.2.4. See [ABD+66] (very general) or Milne’s notes [Mil11]. Also Chapter 5 of [Poo11] con-
tains a short overview.

For a semisimple group there exists a universal covering Gsc which is semi-simple, simply connected
(there are not non trivial geometric étale covering, i.e. over the algebraic closure) and with Pic(Gsc) = 0
that fits in the following exact sequence:

1→ F → Gsc → Gss → 1

F finite, central. This exact sequence induces (Thanks to Corollary 6.11 of [San81]) the following:

0→ Ĝss(k)→ Ĝsc(k)→ F̂ (k)→ Pic(Gss)→ Pic(Gsc)→ Pic(F ) = 0

Since Gsc and Gss are semi-simple, the firs two terms are zero and so one get also Pic(Gss) = F̂ .

Reference 5.2.5. For the existence of the universal covering see Sansuc’s Crelle or “On Picard groups of
algebraic fibre spaces” of R. Fossum and B. Iversen.

Example 5.2.6. SLn is semisimple, GLn is reductive but not semisimple.

5.2.2. Arithmetic of Gsc. Let Gsc be a semi-simple and simply connected group over a filed k.

Theorem 5.2.7 (Harder). Assume k a p-adic field (i.e. finite extension of Qp). Then H1(k,Gsc) = 0

Every principal homogeneous space over the p-adic field under a semi simple and simply connected group
is trivial, i.e. has a rational points. Not easy to prove: you have to know the classification of those groups.

Example 5.2.8. G = SLn and its twisted forms SLD.

Assume k a number field.

Theorem 5.2.9 (Platonov). Gsc satisfies WA.

And finally the harder theorem.

Theorem 5.2.10 (Kneser-Harder-Chernousnov). Every principal homogeneous space ofGsc satisfies Hasse
principle:

H1(k,Gsc)→
∏
v real

H1(kv, G
sc)

is a bijection.

5.2.3. Main Theorem.

Theorem 5.2.11 (Sansuc, 1981). Let G be a connected linear group over a number field k. Then

(1) Let X be a principal homogeneous space of G, then the BM obstruction to the Hasse Principle
associated to B(X) is the only one.

(2) Let Gc be a smooth compactification of G, then the BM obstruction to WA is the only one for Gc.

Reference 5.2.12. The first part of [San81] (It is a fundamental paper!).
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5.2.4. W.A. by Galois Cohomology. k a number field, G connected (reductive) linear group.

Remark 5.2.13. At least in char 0 reductive is not a restrictive assumption: the unipotent part plays no role.

We try to mimic the property of Ono’s Lemma as follows.

Definition 5.2.14. A special covering of G is an exact sequence of k-groups6

(5.1) 1→ B → G′ → G→ 1

with B finite (as k-group), G′ ∼= R ×G0 where R is a quasi trivial torus (i.e. isomorphic to the product of
Weil restrictions: R ∼=

∏
Rki/kGm) and G0 is semi simple, simply connected. Then we have:

• B is central in G′,
• H1(k,G′) ∼=

⊕
v realH

1(kv, G
′) ∼=

⊕
v realH

1(kv, G0) since H1(k,R) = H1(kv, R) = 0 by
Shapiro’s Lemma and Hilbert’s 90, and Kneser-Harder-Chernusov.

The proof of the following Lemma is just a generalization of Ono’s Lemma.

Lemma 5.2.15. There exists m > 0 and a quasi trivial torus R0 s.t. Gm ×R0 has a special covering.

Thanks to this, from now on, we can assume (5.1) does exists.

Theorem 5.2.16 (Sansuc). Let S ⊃ Ω∞ be a finite set of places of k. Then

Coker

[
G(k)→

∏
v∈S

G(kv)

]
∼= Coker

[
H1(k,B)→

⊕
v∈S

H1(kv, B)

]
So the defect of weak approximation at S is given by

Ш1
S(B̂)D = Ker[H1(k, B̂)→

∏
v∈S

H1(kv, B̂)]D

where B̂ = Hom(B,Gm).

Taking the limit over S, we obtain the following Corollary (exactly as in the case of a torus).

Corollary 5.2.17. There is an exact sequence

0→ G(k)
i−→
∏
all v

G(kv)
θ−→Ш1

ω(B̂)D →Ш2(B)→ 0

(the last arrow is from global P.T.). Then Coker i is finite and G satisfies WWA.

The idea is to abelianize the cohomology (the first two terms are not abelian groups, but the coker does!).

Proof. Thanks to (5.1) we obtain an exact sequence of pointed set:

G′(k) G(k) H1(k,B) H1(k,G′)

∏
v∈S G

′(kv)
∏
v∈S G(kv)

∏
v∈S H

1(kv, B)
∏
v∈S H

1(kv, G
′)

The last vertical arrow is an isomorphism by K.H.C. together with the fact that G′ satisfies WA, since
G′ ∼= R×G0 which is ss, sc by Platonov.

Now diagram chasing as in the previous section and Proposition 5.2.19. conclude.
“Non commutative diagram chasing, but you don’t need a torsion argument because it is central!” �

Achtung. To see that the map
∏
v∈S G

′(kv)→
∏
v∈S G(kv) is continuous one has to check something.

Definition 5.2.18. G is split if a maximal torus T of G is split (∼= Gn
m).

In particular G split implies that B ∼=
∏
i µni , and so B̂ has trivial Galois action.

6Isogenies.
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Proposition 5.2.19. Let B a finite Galois module. Take K/k finite Galois extension s.t. the action of
Gal(k, k) factorize through Gal(K, k). Then

Ш1
S(B̂) = Ш1

S non syc(B̂)

with Snon syc ⊂ S consists of places v s.t. the decomposition subgroup of v for K/k is not cyclic.

Proof. See Lemme 1.1 and 1.2 of [San81] (page 18). It is just a consequence of Chebotarev: every cyclic
subgroup of the Galois is conjugated to a decomposition group! �

Let G be connected, linear. Take K/k Galois finite s.t. G splits over K.

Example 5.2.20.
a) Assume that for v ∈ S, every decomposition subgroup of K/k at v is cyclic. Then G satisfies WA

at S because Ш1
S(B̂) = Ш1(B̂).

b) In particular if v|∞, G satisfies WA at v.
c) For R′K/kGm with K/k bycilic (i.e. product of two cyclic group), then there are counterexamples.

5.2.5. Obstruction to the Hasse Principle. We consider (5.1):

1→ B → G′ → G→ 1

and the map
∂ : H1(k,G)→ H2(k,B)

because B is central in G′. So we have a map on the completion, and it make sense (= it respects “being
locally trivial”) to consider

δ : Ш1(G)→Ш2(B)

Theorem 5.2.21 (Sansuc). δ : Ш1(G)→Ш2(B) is injective (actually a bijection).

BM obstruction is an abelian obstruction, so to relate obstruction to BM you have to abelianize the
phenomena as we are doing.

Proof. As usual G′ ∼= R×G0, and we have:

H1(k,B) H1(k,G′) H1(k,G) H2(k,B)

∏
v realH

1(kv, B)
∏
v realH

1(kv, G
′)

∏
all vH

1(kv, G)
∏
all vH

2(kv, B)

Notice that it is important to restrict ourself to finitely many places (i.e. v real in the left). Diagram chasing:
consider g ∈ H1(k,G) s.t.

H1(k,B) g′ g 0

bv (g′v) 0

Notice that the map
H1(k,B)→

∏
v real

H1(kv, B)

is surjective since its cokernel is Ш1
s(B̂), which is zero by the previous lemma, since S is the set of real

places (all the decomposition groups are cyclic!) and the fact that Ш1
ω(B̂)D = 0.

Considering the part (g′v) makes sense even if it is not zero because can be modified using the surjectivity
discussed above, and then an usual torsion argument applies. �

Corollary 5.2.22. Let X be a principal homogeneous space of G. Assume X has a point in extensions ki/k
with coprime [ki : k]. Then X has a k-point.
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Proof. We prove it just in the case ΩR = ∅. We call α the class of X in H1(k,G). Consider

0→ H1(kv, G)
∂−→ H2(kv, B)

it is injective because H1(kv, G
′) = 0. We have that ∂(αv) = 0 by Restriction-Corestriction. So

Ш1(G) ↪→Ш2(B)

So ∂(α) = 0 by Res-Cores. �

Remark 5.2.23. If G is not connected this is an open question (G not abelian, if not Res-Cor works).
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