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1 Introduction
"All that is good is instinctive -

and hence easy, necessary, uninhibited.
Effort is a failing: the god is typically

different from the hero."
Friedrich Nietzsche, Twilight of the Idols

The aim of this survey is to recover the main result of classical number the-
ory using the language of (affine) algebraic geometry. It seems to us that this
is the natural language for most of result and that this point of view simplifies
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both technically and conceptually a lot of proofs. If the reader has some knowl-
edge about Compact Riemann Surface, he sure knows how much the theory of
covering is useful to understand this subject. One of the most basic result is
that every map between two Riemann surfaces is a covering map outside a finite
set. So one can study a curve in the projective plane just looking at how this
curve projects over the projective line and to do it one can use what he known
about covering space. The Riemann existence theorem is depends heavily on
the classification of covering space over S1.
Our point of view is to see every ring of integer as a branched cover of Z and to
study the regularity of the map Spec(OK)→ Z. From this point of view, after
some work for a good theory of covering, a lot of result became pretty obvious.
For example the relation between the discriminant of a number field and the
ramification is clear, if one look at the discriminant as a number that measures
how far is a morphism from being a cover. Other examples are the trace formula
that become really simple once we observe that it can be computed locally, or
the computation of the ring of the integer for cyclotomic field. For the last one,
the classical proof is a little involved and one really doesn’t understand why one
should expect that the computation must be true. Seeing the condition of being
a Dedekind domain as the condition of being a regular curve, the proof become
really simple, clear and an easy exercise in commutative algebra.

We assume knowledge of commutative algebra at the level of Atiyah&MacDonald’s
book.
In the first section we introduce the notion of covering space.
In the second section we develop the basic tool of algebraic number theory using
the theory of covering.
In the third section we study the Picard group and we show his finiteness using
the modern idelic approach that don’t make use of integration or differential
calculus.

2 Background on ètale morphism
"Ma dove siamo?", chiese la mela.
"Se pensi che il mondo sia piatto,
sei arrivata alla fine del mondo.
Se pensi che il mondo sia tondo,
allora sali! Inizia il girotondo!"

Area, la mela di Odessa

2.1 Ètale morphism as finite coverings
In this section we try to define a good notion of finite covering in the contest
of commutative ring. Recall that to get some geometric intiution we have to
apply the functor Spec, so we work in the category CRingop. So a covering B
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of A must be a map A → B. The fist idea one could have to define a covering
is to ask that it must be locally trivial. What does it mean? If we have an open
cover of Spec(A), we can refine it to find a finite cover made by open of the base
D(fi), isomorphic to Spec(Afi), where fi ∈ A and (f1, ..., fn) = A. If we look at
Spec(B ⊗A Af ) as the "ring theoretic fiber" over Af of the morphism A → B,
local triviality could be the existence of an isomorphism of Af algebras between
B ⊗A Af and Anf . This is equivalent to say that we must have a isomorphism
ψ such that make the following diagram commutative.

B ⊗A Af Anf

Af

ψ

If we apply the functor Spec to this diagram we recover a ring theoretic version
of covering.
However this idea doesn’t work. For example, remembering the analogy between
covering space and Galois theory, we want to recover separable extensions of a
field K as covering. With this definition this is not happening! Spec(K) has
only one point, so the only open cover is made by the map K → K, but if F is
a separable extension of K, F 6' Kn so that K → F is not a covering with this
definition.
By the above example is clear that the problem with the definition is that
Spec(A) might have too few open set, so that we have to replace the notion
of open cover with the more elastic notion of open cover in some Grothendieck
topology on C − ringop. For example, if we take E as the Galois closure of
F , we have that E⊗F ' E[F :K] as E algebra, so that if we allow K → E to
be a covering of K we have that F is locally trivial. Since, if {A → Bi} is
a covering in some Grothendieck topology of A and C ∈ A − alg, we want to
compute C⊗ABi without lost information, we want to require at least that the
morphism A→ Bi is flat. So we arrive at the following "minimal definition":

Definition 1 (Faithfull flat topology). 1)We define a finite family of morphism
{A → Bi} a faithful flat covering of A if A → Bi is flat and

∐
Spec(Bi) →

Spec(A) is surjective.

It is easy to verify that this defines a Grothendieck topology on Cringop.
Observe that {A→ Bi} a faithful flat covering of A if and only if the morphism
A →

∏
Bi is faithful flat. So that we can redefine a covering as a faithful flat

morphism A→ B.

Definition 2. A → C is a finite ètale morphism if it is locally trivial in the
faithfully flat topology, i.e there exists a {A→ Bi} a faithful flat covering such
that C ⊗A Bi '

∏
Bni
i as Bi algebra for some ni.

Observe that with this definition a finite separable extension F of K is finite
ètale.
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It is clear that this definition is not very helpful to understand when a morphism
is ètale, so we want to find a different characterization. Suppose that A→ B is
finite ètale so that exists a faithful flat A algebra C '

∏
Ci such that B⊗ACi '

Cni
i as Ci algebra. Observe that B ⊗A C '

∏
Cni
i , so that C → B ⊗A C is a

projective finite morphism with ΩB⊗AC/C = 0.
Since A → C is faithful flat we have that also A → B is finite, projective and
with ΩB/A = 0. We want to show the converse, so that if A → B is finite,
projective and with ΩB/A = 0 then there exists a faithful flat morphism A→ C
that trivializes B. The following lemma will allow us to do an inductive proof.

Lemma 3. Suppose that A→ B is finite, projective and with ΩB/A = 0. Then
there exist an A→ C and an isomorphism ψ : B ⊗B → C ×B that makes the
following diagram commutative, where µ is the multiplication map.

B ⊗A B C ×B

B

ψ

µ πB

Proof We observe that, since A → B is finitely presented, B → B ⊗A B
if finitely presented. So we have an exact sequence of B modules 0 → I →
B ⊗A N → B → 0, where the last map is the multiplication and I is a finitely
generated ideal of B ⊗A B. Recall that ΩB/A ' I

I2 , so that I = I2. Since I is a
finitely generated idempotent ideal, I = (e) for some e ∈ B ⊗B with e2 = e so
that I = eB ⊗A B has a structure of ring. Now we observe that the sequence
has a splitting B → B ⊗A B, so that B ⊗A B ' I ×B as B modules. It is now
easy to verify that this isomorphism preserve the ring structure and make the
diagram commutative.

Definition 4. IfM is a finitely generated projective A-module we define a map:
RankM : spec(A)→ N that send p in the rank of Mp as Ap module (recall that
finitely generated projective is the same that locally free of finite rank).

If we put on N the discrete topology, the map Rank(M) is continuous. For
this we note that if RankM (p) = n we can take f 6∈ p such that Mf is a free
Af module of some rank m. But Anp = Mp 'Mf ⊗A Ap ' Amf ⊗A Ap ' Amp so
that m = n and D(f) is an open such that RankM (q) = RankM (p) for every
q ∈ D(f).

Theorem 5. Suppose that A → B is finite, projective and with ΩB/A = 0.
Then it is finite ètale.

Proof

• Step 1. B has constant rank n.
We do induction on n.
If n = 1 the map is an isomorphism (it is an isomorphism at every local-
ization), so we are done.
If n > 1 we know that B → B⊗AB is finite, projective, with ΩB⊗AB/B = 0
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and rank n. Moreover B⊗AB ' B×C, so that B → B⊗AB ' B×C → C
is A → B is finite, projective, with ΩC/B = 0 and rank n − 1. By
induction we know that there exists a {B → Di} faithful flat cover
such that Di ⊗B C ' Dni

i . Observe that the map A → B is injec-
tive (it is injective at every localization) so that Spec(B) → Spec(A)
is surjective and so {A → B → Di} is a faithful flat cover of A. But
B ⊗A Di ' B ⊗A B ⊗B Di ' (C × B) ⊗B Di ' C ⊗B Di ×Di ' Dni+1

i

and so B is locally trivial.

• Step 2. General case.
Since the map is continuous and RankB(M) can assume only a finite
number of values, we can decompose Spec(A) as a finite disjoint union of
Spec(Ai) such that RankB(M) is constant on Spec(Ai). So if we tensor
the map A '

∏
Ai → B with Aj we find a map Aj → B ⊗A Aj finite,

projective and with ΩB⊗AAj/Aj
= 0. By step one, there exist faithful flat

covers {Aj → Cij} such that B ⊗A Ci,j ' B ⊗A Aj ⊗Aj Cij ' C
nij

ij . To
conclude we just observe that {A→ Cij} is a faithful flat cover of A.

So we have characterized our ètale covering by 3 simple property, Observe
that all the property all local, so that f : A→ B is ètale if and only if it is ètale
at every prime. Moreover if we have a finitely presented flat morphism we have
that A → B is ètale if and only if ΩB/A = 0 if and only if ΩB/A ⊗A κ(p) = 0
for every p ∈ Spec(a), if and only if ΩB⊗Aκ(p)/κ(p) = 0 if and only if B ⊗A κ(p)
is a finite product of finite separable extension of κ(p). Observe that this is
equivalent to say that for every q ∈ Spec(B), if p := f−1(q), κ(q) is a finite
separable extension of κ(p) and pBq = qBq.
In fact if B ⊗A κ(p) is a finite product of separable extension of κ(p), then
B⊗A k(p) '

∏
q|f−1(q)=p k(q) so that k(q) = Bq⊗A k(p) =

Bq

pBq
and hence pBq

is the unique maximal ideal of Bq. For the converse suppose p := f−1(q), κ(q)
is a finite separable extension of κ(p), pBq = qBq and seeking a contraction
suppose that ΩB/A 6= 0. Then there exists a p ∈ Spec(A) such that k(p) ⊗A
ΩB/A = ΩB⊗Ak(p)/k(p) 6= 0 and hence there exists a q ∈ Spec(B) such that
(ΩB⊗Ak(p)/k(p))q = Ω(B⊗Ak(p))q/k(p) 6= 0. Then ΩBq⊗Ak(p)/k(p) = Ωk(q)/κ(p) 6= 0
(here we have used that pBq = qBq) and hence k(q) is not a separable extension
of k(p).

Definition 6. 1)We say that A→ B is unramified at q ∈ Spec(B) if κ(q) is a
finite separable extension of κ(p), pBq = qBq, where p := f−1(q)
2) We say that A→ B is unramified if it is unramified at every prime.

We can resume the content of this section in this theorem:

Theorem 7. Suppose f : A → B a finite projective morphism. Then the
following are equivalent:
1)f is ètale
2)ΩB/A = 0
3)κ(q) is a finite separable extension of κ(p) for every q ∈ Spec(B), p := f−1(q).
4)f is unramified
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2.2 Ètale morphisms by trace map
There is another characterization useful characterization of ètale morphism.
Suppose that K is a algebraically closed field and B if a finite K algebra. We
know that B is ètale if and only if it has not nilpotent element. This hap-
pen if and only if the map B → Hom(B,K) send b to the map y 7→ tr(yb)
is an isomorphism, where tr(z) è the trace to the matrix that represent the
multiplication by z, µz. In fact if B ' Kn it is easy to show that the map
Kn = B → Hom(B,K) ' Kn is the identity and so it is a isomorphism. If the
map B → Hom(B,K) is an isomorphism then we take a nilpotent element x
of B. We have that for every y ∈ B, µxy is a nilpotent map so it has trace 0.
So x is mapped by the previous map to the 0 map ans so, since the map is an
isomorphism, x = 0
So we can detect the property of being ètale by studying the mapB → Hom(B,A)
that send an element to the map the send y to the trace of the morphism µxy.
In general we can define a map, if A→ B is finite projective, B → Hom(B,A).
To do this recall that ψ : B ⊗A B∗ ' Hom(B,B) = End(B), (by the map
the send b ⊗ f in the map that send x to bf(x)) and that we have a map
V al : B ⊗A B∗ → A that send b ⊗ f to f(b). Note that we have also a map
η : B → End(B) that send x to µx. So, if we compose this maps, we have a
map TrB/A : B → A, the trace map, that send x to V al ◦ψ−1(µx). So we have
a map ηB : B → Hom(B,A) that send x to the map (y 7→ TrB/A(µxy).

Definition 8. If A → B if finite and projective, we say that it is separable if
the map ηB : B → Hom(B,A) is an isomorphism.
If x ∈ B we denote TrB/A(x) = V al ◦ ψ−1(µx) and we call it the trace of x.

Lemma 9. If A→ B if finite free and b1..., bn Is a base for B then:
1)If x ∈ B, then TrB/A(x) is the trace of of the matrix of f := µx.
2)B is separable if and only if Det(M = (Tr(bibj))0≤i,j≤n) is in A∗. We call it
Disc(B).

Proof 1) Observe thatHomA(B,A) if free with base b∗1, ..., b∗n, where b∗i (bj) =
δi,j . Take ai,j ∈ A such that f(bi) =

∑n
j=1 ai,jbj and consider a =

∑n
i=1

∑n
j=1 ai,jb

∗
i⊗

bj in P ∗⊗AP . We want to show that, if ψ is the isomorphism B⊗BB∗ → B, then
ψ(f) = a. But ψ(a)(bk) =

∑n
i=1

∑n
j=1 ai,jψ(b∗i⊗bj)(b, k) =

∑n
i=1

∑n
j=1 ai,jb

∗
i (bk)bj =∑n

i=1

∑n
j=1 ai,jδi,kbj =

∑n
j=0 ak,jbj = f(bk). But now TrB/A(f) = val(a) =∑n

i=1

∑n
j=1 ai,jval(b

∗
i ⊗ bj) =

∑n
i=1

∑n
j=1 ai,jδi,j =

∑n
i=1 ai,i and so we are

done.
2)ηB is a iso if and only if his determinant is invertible so it sufficient to show
that the matrix of ηB is M . But this is a easy direct computation.

Definition 10. If A→ B if finite free, we denote with Disc(B) the determinant
of the map B → Hom(B,A). If x ∈ B we denote with NB/A(x) the determinant
of µx and we call it the norm.

Observe that being separable is a local property. In fact we have the following
commutative diagram (observe that A → B if finitely presented so that Hom
commutes with localization):
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B∗ ⊗A B End(B)

B∗p ⊗Ap
Bp End(Bp)

ψB

ψBp

So we have that TrB/A(x) = TrBp/Ap(x) and hence ηB is an isomorphism
if and only if ηBp

is an isomorphism for every p ∈ Spec(A). More general it is
easy to show that for every A→ C, TrB/A(x) = TrC⊗AB/C(x⊗ 1)

Theorem 11. If A → B is finite projective then it is ètale if and only if it is
separable.

Proof Both properties are local, so we can suppose A local with maximal
ideal m. So B is a free A module and hence, since DiscA(B) = Discκ(m)(B ⊗A
κ(m)) is invertible in A if and only if it is invertible in κ(m), B is separable if
and only if B⊗A κ(p) is separable over κ(p). At the same time, since ΩB/A = 0
if and only ΩB⊗Aκ(p)/κ(m), B is ètale if and only if B⊗Aκ(m) is ètale over κ(m).
So we are reduced to show the theorem when A = k is a field. Then B is ètale
if and only B ⊗A k is ètale, where k is a algebraic closure of k. As before, since
Disck(B) = Disck(B ⊗A k) is invertible in A if and only if it is invertible in
k, B is separable if and only B ⊗A k is separable, so that we are reduced to
show the theorem when A = k = k is a algebraically closed field. Then it is
ètale if and only it has no nilpotent element if and only (as we have seen in the
introduction to this section) the trace map is an isomorphism, if and only if it
is separable.

We conclude the chapter showing an easy but very useful property of ètale
morphism.

Proposition 12. Suppose A P.I.D and f : A→ B is injective and finite ètale.
Then B is regular.

Proof Take a prime p ∈ Spec(A). We known that f is unramified so that
pBq = qBq for every q ∈ Spec(B ⊗a κ(p)). Hence the maximal ideal of Bq is
generated by one element. Since we are in dimension 1, we are done.

2.3 Examples
Example 13. Take an algebraically closed field k of characteristic p ≥ 0. We
have a family of maps k[x]→ k[x] that send x to xn for some 1 < n ∈ N. Clearly
this maps are finite and projective. The fiber over (x−α) is k[x]

(xn−α) so they are

not ètale since the fiber over (x) is k[x]
(xn) . But if we consider the localization map

by the multiplicative system generated by x we see that the map k[x]x → k[x]x
is ètale every time (xn−α) is separable over k for every α ∈ k, hence every time
if char(k) = 0 and for every n coprime to char(k) if this is positive.
Observe that this maps are a generalization of the standard finite coverings of
C− {(0, 0)} and that they take in consideration the algebraic properties of the
field.
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Example 14. The example before show a method to get ètale map. For example
take an algebraically closed field k of characteristic 2 6= p ≥ 0 and take the map
k[x] → k[x,y]

(y2−f(x)) where f(x) is a polynomial which isn’t a square and it has

distinct roots. Then fiber over (x−α) is k[x,y]
(y2−f(α)) so that the morphism is ètale

outside the roots αi of f(x). If we localize this morphism by the multiplicative
system generated by (x−αi) we find a ètale morphism between the localization.

Example 15. Take an algebraically closed field k of characteristic p > 0 and
consider the map k[x]→ k[x,y]

(yp−y−x) . The fiber over (x− α) is k[y]
(yp−y−α) and ob-

serve that polynomial yp− y−α is always separable over k since is derivative is
−1. This implies that the morphism is ètale. If k is not algebraically closed the
morphism is again ètale and for this it is sufficient to prove that Ω k[x,y]

(yp−y−x)
/k[x]

=

0. The projection map k[x, y] → k[x,y]
(yp−y−x) induces the conormal exact se-

quence: yp−y+x
(yp−y+x)2 → Ωk[x,y]/k[x] ⊗k[x,y] k[x,y]

(yp−y−x) → Ω k[x,y]
(yp−y−x)

/k[x]
→ 0, so

that Ω k[x,y]
(yp−y−x)

/k[x]
' Coker( k[x,y]

(yp−y−x)/k[x] → k[x,y]
(yp−y−x)/k[x] where the map is

the unique map of k[x,y]
(yp−y−x)/k[x] modules such that 1 → d(yp − y − x) = −1

(since x is a constant). So Coker( k[x,y]
(yp−y−x)/k[x] → k[x,y]

(yp−y−x)/k[x]) = 0 and we
are done.

Example 16. Take a non-algebraically closed field k of characteristic 0 and an
irreducible polynomial f(x) of degree n > 1. Then k[x] → k[x,y]

(f(x)) is ètale. In
fact we can take k ⊆ F the splitting field of f(x) so that f(x) =

∏
(x − αi)

with αi 6= αj ∈ F . Then the map k[x] → F [x] is faithful flat. Now, F [x] '
k[x] ⊗k[x] F [x] → k[x,y]

f(y) ⊗k[x] F [x] ' F [x,y]
f(y) = F [x,y]∏

(x−αi)
'

∏ F [x,y]
(x−αi)

' F [x]n. So
the morphism is ètale since it is banalized by the faithful flat cover k[x]→ F [x].

Example 17. We conclude with an arithmetic example in which we use some
theory of the following section. Take two primes p, q in Z such that p ≡4 1 and
q ≡4 3 and consider K = Q(

√
p) and L = Q(

√
q), M = KL = Q(

√
p,
√
q), N =

Q(
√
pq. We have OK = Z[

1+
√
p

2 ], Disc(OK) = p, OL = Z[
√
p], Disc(OL) = 4q,

ON = Z[
√
pq], Disc(OL) = 4pq, OM = Z[

1+
√
p

2 ,
√
q], Disc(OM ) = 16p2q2. We

want to show that ON → OM is ètale. Observe that the only prime number that
ramifies overM and N are 2, p, q, so that the only ramified prime of ON that can
be ramified in M are the prime over p, q, 2. Observe that p, q, 2 ramify of degree
two inside N so, by multiplicativity of the ramification degree, it is sufficient to
show that they ramifies of degree two inside M . But this is equivalent to show
that the inertia degree of this primes is 2 over Z. And this is easily done, using
the multiplicativity of the inertia degree and the fact that p has inertia degree
2 inside L and that p, 2 have inertia degree 2 inside K.
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3 Basic number theory
"The whole apparatus of conscience

is an apparatus to abstract and simplify -
not oriented towards knowledge,

but to the domain of things"
Friedrich Nietzsche, Posthumous fragments

3.1 Basic tools
For now on we denote with K,L, F 3 finite extension of Q and we denote with
OK , OL, OF the integral closure of Z in K, L, F . We call them the ring of the
integers of K,L and F .
The first step in the study of OK is to show that OK is finite free regular curve
over Z and that the map Z→ OK is ètale outside a finite number of prime.

Lemma 18. a
1)If K ⊆ L and x ∈ K then TrL/K(x) =

∑
σi(x) and NK(x) =

∏
σi(x), where

the sum and the product are taken over the K-map L→ C.
2) If K ⊆ L TrK ◦ TrL/K = TrL, NK ◦NL/K = NL

3)TrK(α) = [K : Q(α)]an−1, NK(α) = a
[K:Q(α)]
0 , where f(x) = anx

n + ... + a0
is the minimum polynomial of α.

Proof 1) We can compute rL/K(x) as TrL⊗QE/E(x⊗ 1), where E is the Ga-
lois closure of L. But we know that L⊗K E '

∏
σ∈Hom(L,C)E by the map that

sends x ⊗ 1 in (σ(x))σ∈Hom(L,C). So, by the linearity of the trace map we are
done. The proof for the norm is similar.
2)Take E, the Galois closure of L. Then Hom(L,C) is a quotient for a sub-
group H of G = Gal(E|Q),Hom(K,C) is a quotient for a subgroup H ′ such
that H ⊆ H ′ and HomK(F,C) is H′

H . By the previous point TrK ◦TrL/K(x) =
TrK(

∑
σ∈G

H
σ(x) =

∑
σ∈H′

H
TrK(σ(x)) =

∑
σ∈H′

H
(
∑
η∈ G

H′
(ησ(x)) =

∑
σ∈G

H
(σ(x)) =

TrL(x). The proof for the norm is similar.
3)By the previous point, we have that TrK(α) = TrQ(α)(TrK/Q(α)(α)) = [K :
Q(α)]TrQ(α)(α) = [K : Q(α)]

∑
σ∈Hom(Q(α),C) σ(α) = [K : Q(α)]

∑
f(γ)=0 γ. If

we note that f(x) =
∏
f(γ)=0 x − γ we are done. The proof for the norm is

similar.

Theorem 19. a
1)Z→ OK is finite, free of rank [K : Q].
2)OK is a Dedekind domain.
3)Let Disc(OK) be the determinant of the trace map OK → Hom(OK ,Z). Then
Z→ OK is ètale at p ∈ Spec(OK) if and on if p 6∈ V (Disc(OK)).

Proof 1)We first show that there exists a basis of K made by element of OK .
Let x ∈ K so that anxn + ... + a0 = 0 for some ai ∈ A. Then if we multiply
this by an−1n we see that anx ∈ OK . So every element in K has a multiple in K

and so we can multiply every member of a casual base of K over Q to obtain a
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basis made by element of OK .
If we show that OK ⊆

∑
kiZ we are done. In fact, since Z is noetherian , OK is

finite over Z and it is clearly torsion free so it is free. The rank(OK) is equal to
the dimension of OK ⊗Q over Q. But OK ⊗Q is isomorphic to Frac(OK) = K
since it is a domain (it the localization of OK by a multiplicative system) finite
over a field so it is a field and so it is Frac(OK).
Let be k1, ..., kn a basis of K with ki ∈ OK . To show that OK ⊆

∑
kiZ we take

x ∈ OK . Since Q→ K is ètale we have another bases, v1, ..., vn of K such that
TrK(kivj) = δij . By previous lemma TrK(xki) ∈ Z, because xui ∈ OK . But if
x =

∑
viqi with qi ∈ Q, TrK(xki) =

∑
qiTr(vjki) = qi so that qi ∈ Z so that

x ∈ OK ⊆
∑
viZ.

2)OK is integrally closed (is a integral closure of Z), noetherian (finite over a
noetherian ring), and of dimension 1 (the map Z → OK is finite and injective
so preserves Krull dimension). 3)We know that every localization of the map
f : Z → OK is flat and of finite presentation. So the map Z(p) → OKp is ètale
if and only if the Disc(OKp) is a unit in Z(p) if and only if Disc(OK) is not in
(p).

Theorem 20. Every ideal in OK is in a unique way the product of power of
primes containing it.

Proof OK is noetherian so we know that every ideal has a irredundant
factorization in primary ideal. But in a Dedekind domain primary ideals are
power of prime (just look what happen in every localization). Now observe that
the prime ideals are coprime one another (they are all maximal) so that we can
exchange intersection with product. For the uniqueness statement observe that,
since we are in dimension 1, every decomposition is minimal.
So we should understand what prime appears in the factorization of a ideal
I. We know that they are exactly the prime ideal associated to I, but in a
Dedekind domain Ass(M) = Supp(M). So p ∈ Spec(A) is the decomposition
of I if and only if (AI )p 6= 0 if and only if I ⊆ p

Remark 21. Observe that a Dedekind domain is a P.I.D if and only if is a
U.F.D. It is sufficient to show that every prime ideal is principal. So we take
a prime ideal I 6= 0,0 6= x ∈ I and write x = pn1

1 ...pnm
m as product of prime

element. Since I is prime we can suppose that 0 6= p1 ∈ I so that (p1) ⊆ I.
But, since we are in a U.F.D, (p1) is a prime ideal. Since a Dedekind domain
has dimension 1 we are done.

Lemma 22. Suppose that H → G is a inclusion of abelian group such that G
H

is finite. Then for every prime coprime to |GH |,
G
pG '

H
pH .

Proof Just consider the long exact sequence for Tor( Z
pZ ,−) induced by 0→

H → G → G
H → 0 and observe that G

H ⊗
Z
pZ = 0 and Tor1( Z

pZ ,
G
H ) = 0 by

coprimality hypothesis.

Corollary 23. Suppose that α ∈ OK , with minimal polynomial f(x), is such
that [OK : Z[α]] is finite and that p ∈ Z is a prime coprime with [OK : Z[α]].
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Then, if f(x) = h̃1(x)ei ...h̃enn is the factorization in irreducible component of
f(x) in Z

pZ [x], we have that (p)OK = (p1)e1(p2)e2 ....(pn)en where pi = (p, hi(α)),

with hi = h̃i in Z
pZ [x].

Proof By the previous lemma we know that OK

(p)OK
' Z[α]

(p)Z[α] '
Z[x]

(p,f(x)) '
Z
pZ [x]

(f(x)) '
∏ Z

pZ [x]

(h̃i(x))
, so that the prime that appear in the decomposition are that

in the thesis. For the exponent just observe that (p)OK = Ker(OK →
∏ Z

pZ [x]

(h̃i(x))
)

Remark 24. Recall that if f : A → A is a injective endomorphism of a free
abelian group, then | A

f(A) | = |Det(Mf )|, where Mf a matrix associated to f . In
particular, if A = OK and f is the multiplication for x ∈ OK then NOK

(x) =
| A(x) |. If we think an ideal I as a "generalized" element, is natural to try to
extend the notion of norm to them. Observe the if 0 6= x ∈ I then we have a
surjection A

(x) →
A
I so that |AI | is finite.

Definition 25. If 0 6= I ⊆ OK we define the norm of I and we denote it by
N(I), the cardinality of the set A

I .

Lemma 26. If I, J are two proper ideals of OK , then N(IJ) = N(I)N(J).

Proof
Since every ideal is a product of maximal ideal, we can suppose I = m

maximal.
We need to show that | AmI | = |

A
I ||

A
m |. Observe that

A
Im
I

mI

' A
I so that |AI ||

I
mI | =

| AIm |. We note that it is sufficient to show that | ImI | = |Am |. For this observe
that I

mI | is
A
m vector space, so that it is sufficient to show that it has dimension

one. Also this happen if and only if it has no proper subspace. So we need
to show that there not exists an ideal between mI and I. But looking at the
decomposition of this ideal we see that is true.

Definition 27. If f : K ⊆ L, p ∈ Spec(OK) and (p)OL =
∏
qeii we call ei the

ramification index of qi over p and we denote it by e(qi, p). Also, we observe
that OL

qiOL
is a finite separable extension of OK

pOK
, (for this just recall that a field

that is finitely generate over Z is finite). We call [ OL

qiOL
: OK

pOK
] the inertia degree

of qi over p and we denote it by f(qi, p).

Remark 28. Since Z → OK is ètale at p ∈ Spec(Z) if and only if p not di-
vides Disc(OK), we see that p is unramified in OK if and only if p not divides
Disc(OK).

Proposition 29. Suppose that K ∩ L = Q. If Disc(OK) and Disc(OL) are
coprime then OKL = OKOL.

Proof First we observe that K,L are linearly disjoint so that K ⊗ L ' KL.
So we have that OK ⊗Z OL injects in OKL and its image is OLOK ⊆ OKL. We
want to show that the latter inclusion is a equality and it is sufficient to show
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that OK ⊗Z OL is integrally closed. Take a prime p in OK ⊗Z OL and consider
the maps f : OK → OK ⊗Z OL ← OL : g. Since the discriminants are coprime,
we can suppose that, if we denote with (p) the prime under q := f−1(p), (p) is
unramified in OK . So we have that the map Z(p) → OK is ètale. If we tensor
this map with OL we see that the map (OK)(p) → (OK ⊗Z OL)(p) is ètale. But
p ∈ Spec((OK ⊗Z OL)(p)) and hence it is regular.

Remark 30. The proof show something more. If d = (Disc(OK), Disc(OL))
then OKL ⊆ 1

dOKOL since 1
dOKOL is regular. This implies that if d 6= 1 then

OKL 6= OKOL.

Proposition 31 (Degree theorem). 1)Suppose that K ⊆ L ⊆ F and let t ∈
Spec(OF ) lying over q ∈ Spec(OL), lying over p ∈ Spec(OK). Then e(t, p) =
e(t, q)e(q, p) and f(t, p) = f(t, q)f(q, p).
2)Suppose K ⊆ L and p ∈ Spec(OK). Then [L : K] =

∑
q∈Spec(OLliyingoverp

e(q, p)f(q, p).

Proof 1)The statement about inertia degree follow immediately from the
multiplicativity of degree for field. For ramification the statement is easy be-
cause pOF = pOLOF .
2)We know that N(pOK) = p[L:K]. Also, if pOL = q

e(q1,p)
1 , ..., q

e(qn,p)
n then

N(pOK) =
∏
N(q

e(qi,p)
i =

∏
N(qi)

e(qi,p) =
∏
|OL

qi
|e(qi,p) =

∏
(pf(qi,p))e(qi,p) =

p
∑
e(qi,pf(qi,p) and so the thesis follows.

Proposition 32 (Galois extension). Suppose K ⊆ L is Galois with group G
and p ∈ Spec(OK). Then:
1) G acts transitively on the set of primes lying over p.
2)For every q1, q2 lying over p, e(q1, p) = e(q2, p) := ep, f(q1, p) = f(q2, p) := fp
so that [L : K] = epfpnp where np is the number of prime lying over p.

Proof 1)Every σ ∈ G induces a automorphism of OL that fixes OK so that
if q lies over p, σ(q) is a prime ideal that lies over p. Now we need to show that
if t lies over p exist a σ such that σ(q) = t and, by prime avoidance and the fact
that the rings have dimension one, it is sufficient to show that t ⊆ ∪σ∈Gσ(q).
So we take x ∈ t and we consider y =

∏
σ∈G σ(x). We know that y ∈ OK and

that y ∈ t, so that y ∈ p ⊆ q. But q is a prime ideal, so exists a σ such that
σ(x) ∈ q. But his means that x ∈ σ−1(q) and we are done.
2)By point 1, we can take a σ such that σ(q1) = q2. σ send a primary de-
composition in primary decomposition and preserve multiplication, so that, by
the uniqueness of the decomposition, we have e(q1, p) = e(q2, p). For the ram-
ification index, just observe that σ induces a isomorphism between OL

q1
and

OL

σ(q1)
= OL

q2
.

Definition 33. If K ⊆ L is Galois with group G and mSpec(OL) is lying over
p, we define the decomposition group of m over p as the subgroup of G made
by σ such that σ(m) = m and we denote it by D(m, p). It is the stabilizer of m
in the action of G over the prime lying over p, so that |D(m, p)| = epfp, since
the action is transitive.

12



Observe that we have a natural morphism D(m, p)→ Gal(OL

m , OK

p . We call the
inertia subgroup of m over p the kernel of this morphism and we denote it by
I(m, p).

Theorem 34. With the notation of the previous definition, the map D(m, p)→
Gal(OL

m , OK

p ) is surjective. In particular, since |Gal(OL

m , OK

p | = fp, |I(m, p)| =
ep so that the map is a isomorphism if and only if p is not ramified.

Proof Take a g ∈ Gal(OL

m , OK

p ) and choose a finite set of generators, a1, ..., an
for OL as OK module. We have to show that exists a σ ∈ G such that
σ(ai) = g(ai) modulo m, since if σ satisfies this condition then σ(m) = m.
This is equivalent to show that the polynomial

∏
σ∈G(

∑
i(g(ai)−σ(ai))Xi van-

ishes in OL

m . Observe that this is h(
∑
i(g(ai)Xi), X1, ..., Xn)) where h(Y,X1, ..., Xn) =∏

σ∈G(Y −
∑
i σ(ai)Xi) where h is a polynomial with coefficients in OL

m . If we
consider h as a polynomial with coefficients in OL we see that it fixed by G,
so that h is a polynomial with coefficients in OK . So we can see h as polyno-
mial with coefficients in OK

p . Since g fixes OK

p , h(
∑
i(g(ai)Xi), X1, ..., Xn)) =

g(h(
∑
i(aiXi), X1, ..., Xn)). But this is 0, since a factor of h is Y −

∑
i aiXi and

so we are done.
Observe that if m and m′ are lying on the same prime p then D(m, p) in

conjugate to D(m′, p), since if σ ∈ Gal(L,K) is such that σ(m) = σ(m′) then it
is easy to see that D(m′, p) and D(m, p) are conjugate by σ. In particular if the
extension is abelian the decomposition group of p is well defined.

Proposition 35. If K ⊆ L ⊆ F and F is the Galois closure of L and if G is
the Galois group of F and H is the subgroup induced by L then:
1)There is a bijection between the set of prime of L lying over a prime p of OK
and the double coset H/G/D(m, p) where m is lying over p.
2)A prime p of OK is totally split in L if and only if it is totally split in F .

Proof 1)We construct an explicit bijection between the two set. At a double
coset HσD(m, p) we associate the prime ψ(HσD(m, p)) := σ(m ∩ L). It is well
defined since if h ∈ H and g ∈ G then h(σ(g((m∩L))) = h(σ(m∩L)) = σ(m∩L),
where the equalities are justified by the fact the g fixes m and h fixes L. We
now show that the map is surjective and injective.
Suppose that q ∈ Spec(OL) lies over p, then there is a prime r ∈ Spec(OF ) over
q and there is a σ ∈ G such that σ(q) = r. Then ψ(HσD(m, p)) = q, so that
the map is surjective.
If σ(m ∩ L) = η(m ∩ L) = q then σ(m) and η(m) are lying over q so that there
exist a ϕ ∈ H such that ϕ(σ(m)) = η(m) so that η−1 ◦ ϕ ◦ σ(m) = m so that
HσD(m, p) = HηD(m, p)
2)Suppose that p is totally split in F then clearly it is totally split in L (just
look at the inertia and ramification degree). Now suppose p is totally split in
F , so that by the previous point the number of double coset H/G/D(m, p) is
[L : K] = [G : H] for every m in Spec(OL). lying over p. Hence the number of
double coset H/G/D(m, p) is the same of the number of coset of H so that (since
every double coset is a disjoint union of rightcoset of H) HσD(m, p) = σH for
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every σ ∈ G. In particular every conjugate of D(m, p) is contained in H so that
the normal subgroup generated by D(m, p) is contained in H. But, since F is
the Galois closure of L (and hence the smallest Galois extension of L), there
are not non trivial normal subgroups in H so that the subgroup generated by
D(m, p) is trivial, hence D(m, p) is trivial, hence p is totally split in F .

3.2 Quadratic, cyclotomic fields and reciprocity law
Now, we want to apply what we have seen before to study when a prime p is
a square modulo another prime q. With a careful analysis of quadratic and
cyclotomic field, we will find a really short proof of the quadratic reciprocity
low.

Proposition 36. Suppose that d ∈ Z is a square free integer and denote with
K = Q(

√
d). Then, if d ≡4 2, 3 then OK = Z[

√
d]. If d ≡4 1 then OK = Z[

√
d].

Proof Suppose that d ≡4 2, 3. It is sufficient to show that Z[
√
d] = Z[x]

x2−d is
integrally closed. For this, we first observe that x2 − d has only simples roots
in Z

(p)Z if p 6= 2 and (p) does not divide d, so that the map Z(p) → (Z[
√
d])(p) is

etalè and we can conclude that the primes over (p) are regular. It is easy to see
that also the prime over (p), where p|d are regular, for this just observe that
they are (x, p) so that the maximal ideal of the localization is generated by (x),
since ( Z[x]

x2−d,x )(x,p) ' (Z
d )(p) ' Z

p is a field (in the last isomorphism we use that
d is square free).
So we have just to understand what happen for the prime over (2). If d ≡4 2
with the same reasoning before we see that (2, x) is regular and we are done.
If d is odd the only prime over 2 is (2, x + 1) and we know that, since the
map Z(2) → (Z[

√
d])(2) is not ètale, the only possible generator for the maximal

ideal of the localization is x + 1. But ( Z[x]
x2−d,x+1 )(x+1,2) ' Z

1−d )(2) ' Z
2r) where

r := max(2r|(1− d)), so that (2, x+ 1) is regular if and only if r = 1 if and only
if d− 1 ≡4 2 if and only if d ≡4 3.
So if d ≡4 2, 3 we are done. If d ≡4 1, we need to add a generator for the
maximal ideal, so that it become regular and the best candidate is 1+x

2 . We
observe that 1+

√
d

2 is integral (it satisfies T 2−T + 1−d
4 ), and contains Z[

√
d]. It

is easy to show that Z[x]

x2−x+ 1−x
4 )

is integrally closed, since it is ètale at (2) and
Z[x]
x2−d] ⊆

Z[x]

x2−x+ 1−x
4 )

has rank 2 so that the decomposition of odd prime in the
two rings are the same.
Remark 37. We observe that, by the explicit formula for discriminant, we have
that Disc(OK) = Det(A)2 where A = [σi(xj)]i,j , where xi is a basis for OK
and σi are the embedding of K in C

Definition 38. If [K : Q] = n and a1, ..., an ∈ OK we define the discriminant of
a1, ..., an as Det([σi(aj)]i,j)2 and we denote it by Disc(a1, ..., an). Observe that
it is independent of the order ai and σj and if K is Galois

√
Disc(a1, ..., an) ∈

OK .
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Proposition 39. Suppose that p is a prime, denote with ζ a primitive ph root
of the unit and with K = Q(ζ). Then OK = Z[ζ] and, up to a sign, Disc(OK)
is a power of p.

Proof Recall that the minimum polynomial of ζ is x(p−1)p
h−1

+...+xp
h−1

+1.
It is sufficient to show that Z

(x(p−1)ph−1+...+xph−1+1)
in integrally closed. Since

xp
h − 1 has only simple roots modulo q if q 6= p, we see that every prime not

lying over (p) is regular. The only prime over (p) is (p, x − 1) and the thesis
follows from the fact that ( Z

(x(p−1)ph−1+...+xph−1+1,x−1)
)(x−1,p) ' Z

(p) is a field.
Since (p) is the only prime that ramifies in K we see that the only prime factor
of the discriminant is p.

Corollary 40. If m ∈ Z, ζ is a primitive m root of unit and K := Q(ζ), then
OK = Z[ζ].

Proof Observe that if m = pr11 ...p
rn
n is the decomposition of m in prime

power, then K = K1, ...,Kn where Ki = Q(ζprii
). The thesis follows once

we note that Disc(OKi
) is coprime Disc(OKj

), Ki ∩ Kj = Q, and so OK =
OK1

...OKn
= Z[ζpr11 ]...Z[ζprnn ] = Z[ζ].

Corollary 41. If 2 < p ∈ Z, ζ is a primitive p root of unit then the unique

subfield of Q(ζ) of dimension 2 over Q is Q(

√
(−1)

n(n−1)
2 p)

Proof We know such extension exist, is unique and it must be in the form
Q(
√
d) for some d square free. Since 2 is not ramified in Q(ζ) it is not ramified

in Q(
√
d) so d ≡1 4. The only prime that can be ramified in Q(

√
d) is p, so

that the only prime that can divide d is p. So d = ±p, where the sign in unique
determined by the condition d ≡4 1.

Theorem 42 (quadratic reciprocity). Suppose that p 6= q are two prime num-
bers greater of 2. Then:
1)(−1p ) = 1 if and only if p ≡4 1.
2)( 2

p ) = 1 if and only if p ≡8 +− 1

3)( qp ) = (−1)
p−1
2

q−1
2 (pq )

Proof 1)Take x + iy ∈ OK := Z[i] ' Z[x]
(x2+1) , then the frobenius automor-

phism of OK

(p) send x+ iy to (x+ iy)p = xp + ipyp = x+ (−1)
p−1
2 y so that it is

the identity morphism if and only if p ≡4 1. This can happen if and only inertia
degree of (p) is one, and, since (p) is not ramified, if and only if (p) is totally
split. But this can happen if and only if x2 + 1 has a root in Z

(p) .
2)Suppose p ≡4 1 then K := Q(

√
p) ⊆ Q(ζp). Recall the the square number

form the only subgroup G of index 2 of H := Gal(Q(ζp),Q) ' ( Z
(p) )
∗ so that

Q(
√
p) is the fixed field of G. Now 2 is a square modulo p if and only if 2 ∈ H if

and only if the frobenius morphism that send ζp in ζ2p became trivial in Q(
√
p),
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if and only if (since 2 is unramified in Q(
√
p) so that the inertia subgroup is

trivial, the frobenius morphism of OK

q is trivial, where q is some prime over
(2) but this can happen if and only if (2) is totally split if and only if, since
OK = Z[

1−√p
2 , x2 − x + 1−p

4 is reducible modulo 2 if and only if 2| 1−p4 , if and
only if p ≡8 1.
Suppose p ≡4 3, then Suppose −p ≡4 3, so that 2 is a square if and only if
−p ≡8 1 if and only if p ≡8 1
3)Suppose p ≡4 1. Then K := Q(

√
p) ⊆ Q(ζp). Recall the the square number

form the only subgroup G of index 2 of H := Gal(Q(ζp),Q) ' ( Z
(p) )
∗ so that

Q(
√
p) is the fixed field of H. Now q is a square modulo p if and only if q ∈ H if

and only if the frobenius morphism that send ζp in ζqp became trivial in Q(
√
p),

if and only if (since q is unramified in Q(
√
p) so that the inertia subgroup is

trivial, the frobenius morphism of OK

q is trivial, where q is some prime over (q).
But this can happen if and only if (q) is totally split if and only if (since the
factorization in OK is the same of the factorization in [

√
p], x2 − p has a root

modulo q if and only if p is a square modulo q. Now, if p ≡4 3, −p ≡4 1, so that
(pq ) = (−1q )(−pq ) = (−1)

q−1
2 ( qp ) and the thesis follows.

3.3 Examples
Example 43. We will show that not every cyclotomic ring is a U.F.D. It is
sufficient to show that exist a prime p such that Z[ζp] is not a P.I.D. Take p = 23
and denote withK = Q(ζp). We have that (47)OK is totally split. In fact x23−1
has only simple root modulo 47. Take a prime p over 47 and suppose that it is
principal generated by x. We know that, since 47 is totally split, NK(p) = 47,
so that |NK(x)| = 47. We know that, since p ≡4 3, L = Q(

√
−p) ⊆ K, so that

NL(NK/L(x)) = NL(x) = |47| and hence, if y = NK/L ∈ OL, |NL(y)| = 47. So
to conclude it is sufficient to show that there not exists element of norm ±47
in OL. But if z = a + b

2 (1 +
√
−p) ∈ OL then NL(z) = (a + b

2 )2 + pb2

4 so that
N(z) ≥ 0. Now (a+ b

2 )2 + pb2

4 = 47 in only if (2a+ b)2 + pb2 = 4 ∗ 47. We need

to have |b| ≤ 2
√

47
p , so that |b| < 3. Clearly b = 0 is not possible. If b = ±1

then (2a ± 1)2 = 4 ∗ 47 − 23 = 165 and this is not possible since 165 is not a
square. If b = ±2 then 4(a ± 1)2 = 4(47 − 23) so that (a + −1)2 = 24 that is
not possible.

Example 44. We will show that there exist a number field K such that there
not exist α such that OK = Z[α]. We will use the following lemma:

Lemma 45. If there exists a prime p < [K : Q] such that (p) is totally split in
OK then p|[OK : Z[α]] for every α ∈ OK . In particular does not exists a α such
that OK = Z[α].

Proof Seeking a contradiction suppose that exists α such that p 6 |[OK : Z[α]].
On one side we know that OK

(p)OK
' Z[x]

(f(x)) where f(x) is the minimum polynomial
of α, so that Hom( OK

(p)OK
, Z
(p) ) has at most p elements.
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On the other side, since (p) is totally split OK

(p)OK
' Z

(p) )
[K:Q] so that there d

element in Hom( OK

(p)OK
, Z
(p) ). But since p < d this is a contradiction.

Lemma 46. If [K : Q] = n and a1, ..., an ∈ OK is a base of K then 1)Disc(a1, ..., an) =
[OK : Z[α]]2Disc(OK)

Proof 1)Take a basis of b1, .., bn of OK. Then aj =
∑
k cj,kbk so that

Disc(a1, ..., an) = Det2((σi(aj))i,j) = Det2((
∑
k cj,k(σi(bk)))i,j) =

Det2((σi(bk))i,k)Det2((cj,k)j,k) = Disc(OK)Det2((ci,j)i,j). Now just observe
that Det((ci,j)i,j) = [OK : Z[α]].

So we have to find a number field K of rank d, such that there exists a prime
p < d totally split in K.
Take f(x) = x3 +x2−2x+8. It has not roots modulo 7 so that it is irreducible.
Denote K = Q(α), where α is a root of f(x). We will show that 2 is totally split
to obtain the thesis. Observe that A := Z[α] 6= OK , since a prime over (2) is
not regular. For this observe that in Z[α] = Z[x

(x3+x2−2+8) the prime over (2) are
p = (2, x) that ramifies, and (2, x+1) that not ramifies. Since 2 ramifies, the only
possible generator of the maximal ideal of Ap is x but Z[x

(x3+x2−2+8,x) (2,x)
' Z

(8)

is not a field.
One can compute that D(1, α, α2) = −4 ∗ 503 and since D(1, α, α2) = [OK :
Z[α]]2Disc(OK) we see that Disc(OK) = −503 so that 2 is unramified in OK .
Observe that NK(α) = 8 and NK(α − 1) = −10 so that (α − 1) = p2p5, where
p2 is a prime over 2 with norm 2. So, since (2) is unramified, we have that
(2) = p2q2, where N(q2) = 4 or (2) = p2p

′
2p
′′
2 . So it sufficient to show that

(2) = p2q2 is not possible. Seeking a contradiction suppose that (2) = p2q2.
Then, since α 6∈ p2, (α) = qr2 for some r, but, taking the norm, we see 8 = 4r

that is not possible.

Example 47. Another more general example of non primitive ring of integer.
Suppose that p ≡3 1 and that there exist a prime q < p such that q is a cube
mod p (i.e p = 31, q = 2 so that 43 = 64 ≡31 2). Then consider the only cubic
subfield K of Q(ζp). Then (q) is unramified in K, so that (since K is Galois) it
is totally split if and only if it is not inert if and only if the q-frobenius morphism
is trivial. But since q is a cube modulo p the restriction of the q-frobenius map
is trivial and so q is totally split. Using the preceding lemma we are done.

Example 48. Denote with Θn(x) the nth cyclotomic polynomial. We want to
show that it is irreducible modulo p if and only if p is a generator of Z

(n)Z
∗. We

can suppose p - n. Consider K = Q(ζn), his Galois group is isomorphic to Z
(n)Z

∗,
by the map that send m to ψm : ζn 7→ ζmn , and we know that OK = Z[ζn] so
that Θn(x) is irreducible modulo p if and only if (p) is inert in K. Since (p) is
unramified in K we know that the inertia group is trivial for every prime ideal
over (p). Take a prime p over (p). (p) is inert if and only if the decomposition
group is all Gal(K,Q), if and only if Gal(K,F ) is cyclic, generated by the
application that send ζn to ζpn, if and only if p is a generator of Z

(n)Z
∗.
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Example 49. We want to explain why being a Dedekind domain is so important.
Take for example A := Z[

√
5] ' Z[x]

(x2−5) , it is not a Dedekind domain (for this
we can observe that the only prime (2, x+ 1) over (2) is not regular by looking
at the localization or just observe that 1+

√
5

2 has minimum polynomial t2− t−1

and it is not in A). Observe that (1 + x) is a primary ideal, ( A
(1+x) '

Z
(4) ) but

is not a power of prime! In fact, the only prime over 1 + x is J = (2, 1 + x),
but J2 = (2), so that (1 + x) is not a power of a prime ideal!. This take off the
possibilities to have a unique minimal primary decomposition for every ideal.
In fact (1 + x)(1 − x) = (1 − 5) = (4) = (2)(2) = (2, 1 + x)4 are two minimal
prime decomposition! So if we drop of the condition to be a Dedekind domain
we can’t talk about ramification index, inertia group or whatever.

Example 50. We will study the decomposition of some ideals in K = Q(α, i)
where α = 4

√
3. It is the splitting field of x4− 3, it has degree 8 over Q and it is

the Galois closure of Q(α). His Galois group is the dihedral group, generated by
s, t, where s(α) = iα, s(i) = i, t(α) = α, t(i) = −i (it is the semi direct product
of the Galois groups of L := Q(α) and F := Q(i) over Q.
Observe that OL = Z[α] = Z[x]

x4−3 , since Z[α] is regular (it is ètale outside 2, 3
and it is easy to see that the ideal over 2, (2, x− 1), is generated by x− 1 and
that the ideal over 3, (3, x) is generated by x). So to understand what prime
are totally split split in OK it sufficient to understand what prime are totally
split in OL and this is equivalent to understand when x4 − 3 is totally split in
Fp.
Suppose p 6= 2, 3. When 3 is a quartic power in Fp? Well, if p ≡3 4, being a
4th power modulo p is the same of being a square modulo p (since x2 + 1 is
irreducible modulo p by quadratic reciprocity), so that 3 is a 4th power if and
only if 3

p = 1 if and only if p
3 = −1 if and only if p ≡3 2. If p ≡4 1, since the

group of unit of Fp is cyclic and the quartic powers form a subgroup of index 4,
3 is a square if and only if 3

p−1
4 ≡p 1. So we have that x4− 3 has a roots if and

only if 3
p−1
3 ≡p 1. When x4 − 3 has four different roots? This can happen if

and only if there exist a primitive 4th roots of unit in Fp. And this can happen
if only if the 4th cyclotomic polynomial is reducible over Fp. This is equivalent,
by a previous example, to say that p is a not a generator of ( Z

(4) )
∗ ' Z

(2) . So this
happen if and only if p ≡4 1. In conclusion a prime p is totally split in K if and
only if p ≡4 1 and 3

p−1
4 ≡p 1 (observe that this is consistent since, by quadratic

reciprocity p split over Q(i) in only if p ≡4 1).
We have shown something more, in fact we have shown that if p ≡4 1 and
3

p−1
4 6≡p 1 then t4 − 3 is irreducible modulo p, if p ≡12 11 then t4 − 3 splits in

3 factors, 2 of degree one e one of degree 2, if p ≡12 7 then t4 − 3 splits in 2
factors of degree 2.
So we have a basic understanding of the splitting of the primes in L and we
also know that the only totally split ideals in K are those with p ≡4 1 and
3

p−1
4 ≡p 1. Now, if p ≡4 1 and 3

p−1
4 6≡p 1, we have that (p) is inert in L and so,

by multiplicativity of inertia, we know that 4|fp: Also, and we know that they
split in Q(i) and so that there are at least two primes in K over (p). Hence,
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since [K : Q] = 8, we can conclude that there are only 2 prime ideals over (p)
in K with inertia degree equal 4.
Suppose p 6= 2. Observe that Disc(OL) is divisible only for some power of 2
and 3, and that Disc(OL) = −4. Hence we know that OK ⊆ 1

2rOLOF for some
r ∈ N so that (OK)(p) = (OLOF )(p) and (OK)(p) = (OL[i])(p) ' OL[x

(x2+1)] . Take a
prime p in OL that lies over (p) and with inertia degree n > 1 (it exists by the
preceding discussion). To study how this primes decompose in K it is sufficient
to study how x2 + 1 decompose in Fpn . But x2 + 1 decompose in Fpn in two
distinct factors. So we see that OL → OK is ètale outside 2. By multiplicativity
of the ramification index we see that if p ≡4 3 then fp = 2 and np = 4.
It remain to study the primes over 2 and 3, but this is easy. In fact, since 3 in
totally ramified in L and inert in F , we see that f3 = 2, e3 = 4 and n3 = 1. The
prime 2 is totally ramified in K since it is totally ramified in L and the map
OL → OK must be ramified in 2 (if not OK = OLOF and this is not possible
since they have not coprime discriminants).
To summarize:

• 2 is totally ramified

• f3 = 2, e3 = 4 and n3 = 1

• if p ≡4 3, np = 4 and fp = 2

• if p ≡4 1 and 3
p−1
4 ≡p 1 then (p) is totally split

• if p ≡4 1 3
p−1
4 6≡p 1 then np = 2 and fp = 4

Example 51. As last example we want to study the number of solution of the
equation x2 − x + 5 modulo some prime p. Observe that for p = 2 it has not
solution, so we can suppose p 6= 2. We note that x2 − x + 5 is the minimum
polynomial of 1+

√
−19
2 , so it has a solution modulo p if and only if the prime (p)

split over OK , where K = Q(
√
−19). Since p 6= 2, the factorization of prime

over OK is controlled by the factorization of prime over Z[
√
−19] ' Z[x]

x2+19 . So
if p = 19 it has only a solution. If p 6= 19 then (p) is not ramified over K so
that it split in two different factor if and only if −19 is a square modulo p. But
by quadratic reciprocity −19 is a square modulo p if and only if p is a square
modulo 19. So it has two solution if and only p is a square modulo 19 if and
only if p ≡19 1, 4, 5, 6, 7, 11, 16, 17.
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4 Finiteness theorems

4.1 Ricard group

4.2 Idele and Adele

4.3 Finiteness theorem
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