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ABSTRACT. Let k be a finitely generated field of characteristic p > 0 and X a smooth and proper scheme over k.
Recent works of Cadoret, Hui and Tamagawa show that, if X satisfies the `-adic Tate conjecture for divisors for every
prime ` 6= p, the Galois invariant subgroupBr(Xk)[p

′]π1(k) of the prime-to-p torsion of the geometric Brauer group of
X is finite. The main result of this note is that, ifX satisfies the `-adic Tate conjecture for divisors for every prime ` 6= p,
for every integer d ≥ 1, there exists a constant C := C(X, d) such that for every finite field extension k ⊆ k′ with
[k′ : k] ≤ d and every (k/k′)-form Y ofX one has |(Br(Y ×k′ k)[p′]π1(k

′)| ≤ C. The theorem is a consequence of
general results on forms of compatible systems of π1(k)-representations and it extends to positive characteristic a recent
result of Orr and Skorobogatov in characteristic zero.
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1. INTRODUCTION

Let k be a field of characteristic p ≥ 0 with algebraic closure k and write π1(k) for the absolute Galois group
of k. In this paper, a k-variety is a reduced scheme, separated and of finite type over k and, if X is a k-variety, we
write Xk := X ×k k. The letter ` will always denote a prime 6= p.

1.1. Brauer groups.

1.1.1. Finiteness of Brauer groups. Let X be a k-variety. Write Br(Xk)[p′] for the prime-to-p torsion of the
(cohomological) Brauer groupBr(Xk) := H2(Xk,Gm) ofXk and recall that ifX is smooth over k thenBr(Xk)

is a torsion group. If k is finitely generated and X is smooth and proper over k, one expects Br(Xk)[p′]π1(k) to be
finite. This is predicted by (variants of) the `-adic Tate conjecture for divisors ([Tat65]):

Conjecture 1.1.1.1 (T (X, `)). Assume that k is finitely generated and X is a smooth and proper k-variety. Then
the `-adic cycle class map

cXk
: Pic(Xk)⊗Q` →

⋃
[k′:k]<+∞

H2(Xk,Q`(1))π1(k′)

is surjective.

As it is well known (see e.g. [CaCha18, Proposition 2.1.1]), Conjecture T (X, `) holds if and only if, for any
finite field extension k ⊆ k′, the `-primary torsionBr(Xk)[`∞]π1(k′) ofBr(Xk)π1(k′) is finite. But one can expect
stronger finiteness results.

Fact 1.1.1.2. Assume that k is finitely generated and X is a smooth and proper k-variety. Then:
(1) [OSk18, Theorem 5.5]: If p = 0 and the integral Mumford Tate conjecture forX holds ([Ser77, Conjecture

C.3]), then Br(Xk)π1(k) is finite;
1
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(2) [CaHT17, Corollary 1.5]: If p > 0 and T (X, `) holds for every prime ` 6= p (or equivalently for one prime
` 6= p), then Br(Xk)[p′]π1(k) is finite.

1.1.2. Uniform boundedness in forms. Let X be a smooth proper variety over a finitely generated field k. Recall
that for a field extension k ⊆ k′ ⊆ k, a (k/k′)-form of X is a k′-variety Y such that Yk := Y ×k′ k ' Xk.
Let k ⊆ k′ be a finite field extension and let Y be a (k/k′)-form of X . If p = 0 and X satisfies the integral
Mumford Tate conjecture (resp. if p > 0 and T (X, `) holds for every prime ` 6= p), then the same is true for Y ,
hence Br(Yk)π1(k) (resp. Br(Yk)[p′]π1(k′)) is a finite group. But, for an integer d ≥ 1, it is not clear whether one
can find a uniform bound (depending only on X and d) for |Br(Yk)π1(k′)| (resp. |Br(Yk)[p′]π1(k′)|), while k′ is
varying among the finite field extensions k ⊆ k′ with [k′ : k] ≤ d and Y among the (k/k′)-forms of X . If p = 0,
this is proved by Orr-Skorobogatov in [OSk18, Theorem 5.1]. If p > 0, this is the first main result of this note.

Theorem 1.1.2.1. Assume that k is finitely generated, X is a smooth proper k-variety and p > 0. If T (X, `) holds
for every prime ` 6= p (or equivalently for one prime ` 6= p), then for every integer d ≥ 1, there exists a constant
C := C(X, d) such that for every finite field extension k ⊆ k′ of degree ≤ d and every (k/k′)-form Y of X one
has

(Br(Yk)[p′])π1(k′) ≤ C.

1.2. Forms of representations. Theorem 1.1.2.1 is a consequence of two general results (Propositions 1.2.2.1
and 1.2.2.2) on compatible systems of π1(k)-representations. Before stating them, we introduce some definitions
and notation. In the following, k is a finitely generated field of characteristic p > 0, Fq (resp. F) is the algebraic
closure of Fp in k (resp. in k) and we write kF := k ⊗Fq

F ' kF ⊆ k. Set `0 = 3 (resp. `0 = 2) if p 6= 3 (resp.
p = 3) and s` = ` (resp. s` = 4) if ` 6= 2 (resp. ` = 2). Fix a collection T := {T`}` 6=p of rank r finitely generated
Z`-modules endowed with a continuous action of π1(k).

1.2.1. Definitions. We say that T is a compatible system of π1(k)-modules if there exists a smooth geometrically
connected Fq-variety K with generic point Spec(k)→ K such that, for every prime ` 6= p, the action of π1(k) on
T` factors through the canonical surjective morphism π1(k) � π1(K) and the collection {V` := T` ⊗Q`}` 6=p give
rise to a Q-rational compatible system on K in the sense of Serre: for each closed point t ∈ K, the characteristic
polynomial of the arithmetic Frobenius at t acting on V` is in Q[T ] and independent of `.

Remark 1.2.1.1. The notion of compatible system is stable under subquotients and the usual operations ⊕, ⊗, ∨.

Definition 1.2.1.2. Let k ⊆ k′ be a finite field extension. A (k/k′)-form of T is a compatible system of π1(k′)-
representations U such that, for each ` 6= p, there exists a finite field extension k′ ⊆ k` and an isomorphism of
π1(k`)-modules T` ' U`.

1.2.2. Results. In Definition 1.2.1.2, the extension k ⊆ k` is allowed to depend on `. Our first main result in this
setting produces an extension of (explicitly) bounded degree that works for every prime ` 6= p. Let ? ∈ {∅,F}.

Proposition 1.2.2.1. Let U be a (k/k)-form of T . Then, there exists a finite field extension k? ⊆ kU of degree
≤ |GLr(Z/s`0)|2 and a π1(kU )-equivariant isomorphism T`/(T`)tors ' U`/(U`)tors for every prime ` 6= p.

Proposition 1.2.2.1 reduces the problem of bounding uniformly the invariants of forms of T to studying the
action of π1(k′) on T , when k ⊆ k′ is varying among the finite field extensions of bounded degree. In this setting
we prove:

Proposition 1.2.2.2. Suppose that T` is torsion free for `� 0. Then there exists a finite field extension k? ⊆ k′ of
degree≤ |GLr(Z/s`0)| with the following property: For every integer d ≥ 1 there exists a constant C := C(T , d)
such that, for every finite field extension k′ ⊆ k′′ of degree ≤ d, one has∏

` 6=p

[(T` ⊗Q`/Z`)π1(k′′) : (T` ⊗Q`/Z`)π1(k′)] ≤ C.

Remark 1.2.2.3. In the proof of Theorem 1.1.2.1 we only use the version of Propositions 1.2.2.1 and 1.2.2.2 where
? = ∅. On the other hand, the proofs of the two versions are very similar and we believe that both versions are of
independent interest.
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1.3. Motivic representation. The main motivation to state Propositions 1.2.2.1 and 1.2.2.2 in this generality is
that they apply directly to representations associated to `-adic étale cohomology of smooth proper k-varieties; see
Subsections 3.1.2 and 3.2.1. Since Propositions 1.2.2.1 and 1.2.2.2 require only the compatibility of the compat-
ible system and not further assumptions as purity, one could apply them also to representations arising from the
cohomology of some not necessarily smooth and proper k-varieties (e.g. semi-abelian schemes).

1.4. Strategy. To prove Proposition 1.2.2.1, first we prove a group theoretic proposition (Proposition 2.1.1.1) that
bounds the number of connected components of the Zariski closure of the image of an `-adic representation of a
profinite group, only in terms of ` and of the rank of the representation. To get Proposition 1.2.2.1, one has to get
rid of the dependency on `. This follows formally from the fact that the connectedness of the `-adic monodromy
group can be read off the L-function of the various compatible systems {T⊗n` ⊗ (T∨` )⊗m}` 6=p.

For the proof of Proposition 1.2.2.2, the key point is to show that, if the Zariski closure of the image of π1(k)
acting on V` is connected, then for every integer d ≥ 0 there exists a constant D, depending only on d and T , such
that, for every finite field extension k ⊆ k′ of degree ≤ d, one has (T`/`)

π1(k) = (T`/`)
π1(k′) for every prime

` ≥ D. To prove this, one exploits again independence results, not in the `-adic setting but in the ultrafilter setting,
recently obtained by Cadoret-Hui-Tamagawa in [CaHT17] and by Cadoret in [Ca18, Section 15].

Smooth proper base change theorem, the Weil conjectures ([De80]) and the independence of ` of homological
equivalence for divisors show that {T`(Br(Yk)) := lim←−nBr(Yk)[`n]} 6̀=p is a compatible system. In this setting,
Propositions 1.2.2.1 and 1.2.2.2 are the positive characteristic analogues of [OSk18, Propositions 5.4 and 5.5],
hence we can conclude the proof of Theorem 1.1.2.1 adjusting the arguments in [OSk18, Section 5.4].

1.5. Organization of the paper. In Section 2 we prove Propositions 1.2.2.1 and 1.2.2.2. In Section 3 we apply
Propositions 1.2.2.1 and 1.2.2.2 to representations coming from geometry and we prove Theorem 1.1.2.1. We end
the paper in Section 3.2 discussing applications to abelian varieties.

1.6. Acknowledgements. This paper is part of the author Ph.D. project under the supervision of Anna Cadoret.
He thank her for many (many) useful discussions and insights and for her careful re-(re)-reading. The author is
also grateful to Akio Tamagawa for suggesting the counterexample in Footnote 3.

1.7. Conventions and notation. For the rest of the paper k is a finitely generated field of characteristic p > 0
with algebraic closure k ⊆ k. We write Fq (resp. F) for the algebraic closure of Fp in k (resp. k) and kF :=

k ⊗Fq F ' kF ⊆ k. If R is a commutative ring, A an R-module and n,m integers ≥ 0, set

Tn,m(A) := A⊗R . . .⊗R A︸ ︷︷ ︸
n times

⊗RA∨ ⊗R . . .⊗R A∨︸ ︷︷ ︸
m times

.

If G is an algebraic group over a field, write G0 for its neutral component and π0(G) for the group of connected
components. Write `0 = 3 (resp. `0 = 2) if p 6= 3 (resp. p = 3) and s` = ` (resp. s` = 4) if ` 6= 2 (resp. ` = 2).

2. FORMS OF REPRESENTATIONS

2.1. Proof of Proposition 1.2.2.1. Before proving Proposition 1.2.2.1, we collect a couple of preliminary propo-
sitions.

2.1.1. A group theoretical proposition. Let T be a free Z`-module of rank r and let Π ⊆ GL(T ) be a closed
subgroup. Write V := T ⊗Q` and let G ⊆ GL(V ) be the Zariski closure of Π. Then:

Proposition 2.1.1.1. |π0(G)| ≤ |GLr(Z/s`)|

Proof. Write Gred for the Zariski closure of the image of Π acting on the Π-semisimplification of V . Since the
kernel of the natural surjection G → Gred is unipotent hence connected, it induces an isomorphism π0(G) '
π0(Gred). So, one may assume that G is reductive. Write H := Ker(Π → GL(T/s`)). Since [Π : H] ≤
|GLr(Z/s`)| and H acts trivially on GL(T/s`), Lemma 2.1.1.2 below concludes the proof. �

Lemma 2.1.1.2. If G is reductive and the action of Π on T/s` is trivial, then G is connected.
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Proof. By [LarP95, Lemma 2.3], it is enough to show that, for every irreducible representation W of GL(V )

one has WG = WG0

. Since GL(V ) is reductive, by [De82, Proposition 3.1] every irreducible representation of
GL(V ) is a sub module of Tn,m(V ) and hence it is enough to show that for every integers n,m ≥ 0

Tn,m(V )G = Tn,m(V )G
0

.

The Z`-module Tn,m(T ) is a Π-invariant Z`-lattice in Tn,m(V ) and Π acts trivially on Tn,m(T )/s` = Tn,m(T/s`),
so that, by [CaT18, Lemma 2.1], for every open subgroup U ⊆ Π one has

HomΠ(Q`, Tn,m(V )) = HomU (Q`, Tn,m(V )).

Applying this to U := Ker(Π � π0(G)), one gets

Tn,m(V )G = HomΠ(Q`, Tn,m(V )) = HomU (Q`, Tn,m(V )) = Tn,m(V )G
0

.

�

2.1.2. Independence. Let ? ∈ {∅,F}. Let T be a π1(k)-compatible system of finitely generated Z`-modules of
rank r and write G`,? for the Zariski closure of the image of π1(k?) acting on V` := T` ⊗Q`.

Corollary 2.1.2.1. For every prime ` 6= p one has |π0(G`,?)| ≤ |GLr(Z/`0)|.

Proof. By Lemma 2.1.1.1, it is enough to show that if G`0,? is connected then G`,? is connected for every prime
` 6= `0. By definition of a compatible system, there exists a smooth geometrically connected Fq-variety K with
generic point Spec(k) → K such that, for every prime ` 6= p, the action of π1(k) on T` factors through the
surjection π1(k) � π1(K). So it is enough to show the corresponding statement for the actions of π1(K) and
π1(KF) on V`. This follows from Fact 2.1.2.2 below. �

Fact 2.1.2.2. G`0,? is connected if and only if G`,? is connected.

Proof. To prove Fact 2.1.2.2 one can replace V` with its π1(K)-semisimplification. So we may and do assume that
V` is semisimple as π1(K)-module, hence as π1(KF)-module. Then, arguing as in Lemma 2.1.1.2, it is enough to
show that for every integers n,m ≥ 0 one has

Tn,m(V`)
G`,? = Tn,m(V`0)G`0,? .

By [Laf02] and [Dr12] every semisimple π1(K)-modules is direct sum of its pure components (see [D’A17, The-
orem 3.5.5] for more details) so that one reduces to the situation in which V`0 and V` are pure. Then, by the
theory of weights ([De80]), the dimensions of Tn,m(V`)

G`,? and Tn,m(V`0)G`0,? , can be read on the L-functions
of Tn,m(V`)

∨(d) and Tn,m(V`0)∨(d), where d is the dimension of K (see [D’A17, Proposition 3.4.11] for more
details). Since Tn,m(V`) and Tn,m(V`0) are compatible, this concludes the proof. �

Remark 2.1.2.3. Fact 2.1.2.2 is proved in [Ser81] if ? = ∅ and in [LarP95, Theorem 2.2] if ? = F and V` is pure.

2.1.3. Proof of Proposition 1.2.2.1. Keep the notation as in the statement of Proposition 1.2.2.1 and fix ? ∈ {∅,F}.
We can replace T` with T`/(T`)tors and U` with U`/(U`)tors, hence assume that T` and U` are torsion free. Since
T and U are compatible systems, {H` := T∨` ⊗U`}` 6=p is a compatible system as well. By Corollary 2.1.2.1, there
exists a finite field extension k? ⊆ kU of degree ≤ |GLr2(Z/s`0)| such that the Zariski closure G` of the image
of π1(kU ) acting on H` ⊗ Q` is connected for every prime ` 6= p. We claim that kU satisfies the conclusion of
Proposition 1.2.2.1. By assumption, there exists a finite extension k ⊆ k` and an isomorphism

ψ` ∈ Hπ1(k`)
` ⊆ Hπ1(k`kU )

` ,

hence it is enough to show that Hπ1(kU )
` = H

π1(k`kU )
` . Since Hπ1(k`kU )

` /H
π1(kU )
` is torsion free, it is enough to

show that (H` ⊗ Q`)π1(kU ) = (H` ⊗ Q`)π1(k`kU ) and this follows from the facts that kU ⊆ k`kU is a finite field
extension and G` is connected. This concludes the proof.

2.2. Proof of Proposition 1.2.2.2. Keep the notation as in the statement of Proposition 1.2.2.1 and fix ? ∈ {∅,F}.
Write

V` := T` ⊗Q`; M` := T` ⊗Q`/Z`; T ` := T`/`.
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2.2.1. Preliminary reduction. Write G`,? for the Zariski closure of the image Π`,? acting on V`. By Corollary
2.1.2.1 and replacing k? with a finite field extension of degree ≤ |GLr(Z/s`0)|, one may assume that G`,? is
connected for every prime ` 6= p. Since by assumption there are at most finitely many T` with torsion and these are
finitely generated Z`-modules, we may replace T` with T`/(T`)tors hence assume that T` is torsion free for every
prime ` 6= p. The proof of Proposition 1.2.2.2 is the combination of the following two claims and the arguments
in Section 2.2.4.
Claim 1: For every integer d ≥ 1 and for every prime ` 6= p, there exists a constant A` := A(d, `, T ) such that,
for every finite field extension k? ⊆ k′ of degree ≤ d, one has [M

π1(k′)
` : M

π1(k?)
` ] ≤ A`.

Claim 2: For every integer d ≥ 1, there exists a constant D := D(T , d) such that, for every prime ` ≥ D and for

every finite field extension k? ⊆ k′ of degree ≤ d, one has T
π1(k′)

` = T
π1(k?)

` .

2.2.2. Proof of Claim 1. Since Π`,? is a compact `-adic Lie group, it is topologically finitely generated and hence
it has finitely many open subgroups of bounded index. So it is enough to show that if U ⊆ Π`,? is an open subgroup
then [MU

` : M
Π`,?

` ] < +∞. This follows from [CaCha18, Lemma 3.3.2] and the connectedness of G`,?. To the
reader convenience, we briefly recall the argument.

Since G`,? is connected, one has V Π`,?

` = V U` and TΠ`,?

` = TU` . The exact sequence

0→ T` → V` →M` → 0

induces a commutative diagram with exact rows:

0 V
Π`,?

` /T
Π`,?

` M
Π`,?

` H1(Π`,?, T`)

0 V U` /T
U
` MU

` H1(U, T`)
∆

So MU
` /M

Π`,?

` is a quotient of the image of ∆. But ∆ has finite image since MU
` is torsion and H1(U, T`) is a

finitely generated Z`-module by [Ser64, Proposition 9].

2.2.3. Proof of Claim 2. For any finite field extension k? ⊆ k′, consider the images Πk′ ⊆ Π? of π1(k′) ⊆ π1(k?)
acting on T :=

∏
` 6=p T `. By definition of a compatible system, there exists a smooth geometrically connected

Fq-variety K with generic point Spec(k) � K such that, for every prime ` 6= p, the action of π1(k) on T`
factors through the canonical surjection π1(k) → π1(K). By the Grothendieck-Ogg-Shafarevich formula, there
exists a connected étale cover K′ → K such that the action of π1(K′) ⊆ π1(K) on T factors through the tame
fundamental group of K′; see the proof of [Ca18, Lemma 12.3.1]. Since the tame fundamental groups of K′ and of
every connected component of K′F are topologically finitely generated, this implies that Π? is topologically finitely
generated. Hence the group Π? has finitely many open subgroups of index ≤ d. So there are only finitely many
possibilities for the inclusions Πk′ ⊆ Π?, while k? ⊆ k′ is varying among the finite field extensions of degree≤ d.
So, to prove Claim 2, it is enough to show1 that, for every finite field extension k? ⊆ k′ of degree ≤ d, there exists

a constant D′ := D′(T , k′) such that for ` ≥ D′ one has T
π1(k′)

` = T
π1(k?)

` .
Let L be the set of prime 6= p and write F :=

∏
`∈L F`. We use the formalism of ultrafilters2 on L; see

[CaHT17, Appendix]. To every ultrafilter u on L one associates a maximal ideal mu of F and writes Fu := F/mu

for the characteristic zero residue field. The actions of π1(k?) and π1(k′) on T induces actions on Tu := T ⊗F Fu.
Since Π? and Πk′ are topologically finitely generated groups, by [CaHT17, Lemma 4.3.3] and [CaHT17, Lemma
4.4.2] it is enough to show that Tπ1(k?)

u = T
π1(k′)
u for every ultrafilter u. Write Gu,? and Gu,k′ for the Zariski

closures of the images of π1(k?) and π1(k′) acting on Tu. Since Tπ1(k?)
u = T

Gu,?
u and T

Gu,k′
u = T

π1(k′)
u , it is

enough to show that the natural inclusion Gu,k′ ⊆ Gu,? is an equality. Since π1(k′) ⊆ π1(k?) has finite index,
one has G0

u,k′ = G0
u,? hence it is enough to show that Gu,? is connected. This follows from the fact that G`,? is

connected by preliminary reduction and Fact 2.2.3.1 below.

1This is not a formal consequence of [π1(k?) : π1(k′)] being finite, as the example {1} ⊆ {1,−1} ⊆
∏
` 6=pGL(T `) shows.

2In this note an ultrafilter will always mean a non-principal ultrafilter.
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Fact 2.2.3.1. The group G`,? is connected if and only if Gu,? is connected.

Proof. If ? = ∅ this is proved in [CaHT17, Theorem 1.3.1] and if ? = F this is proved in [Ca18, Corollary
15.1.2]. �

2.2.4. End of the proof. To conclude the proof of Proposition 1.2.2.2, fix a finite field extension k? ⊆ k′ of degree
≤ d. Up to replacing d with d! we may restrict to finite Galois extensions k? ⊆ k′, so that π1(k′) ⊆ π1(k?) is a
normal subgroup. By Claim 1, it is enough to show that there exists a constant A := A(T , d) such that for ` ≥ A

one has Mπ1(k?)
` = M

π1(k′)
` and, by Claim 2, there exists a constant D := D(T , d) such that for ` ≥ D one has

T
π1(k?)

` = T
π1(k′)

` . We claim that A := max(D, d+ 1) has the desired property.
Since M` = lim−→n

M`[`
n], it is enough to show that for ` ≥ A and every n ≥ 1 one has M`[`

n]π1(k?) =

M`[`
n]π1(k′). For this, one argues by induction on n, the case n = 1 being the definition of D. For n > 1, since T`

is torsion free, there is a π1(k?)-invariant identification M`[`
n] ' T`/`n and a π1(k?)-equivariant exact sequence

0→ T ` → T`/`
n → T`/`

n−1 → 0.

Combined with the inflation-restriction exact sequence for the normal inclusion π1(k′) ⊆ π1(k?), this induces a
commutative exact diagram

H1(π1(k?)/π1(k′), T
π1(k′)

` )

0 T
π1(k?)

` (T`/`
n)π1(k?) (T`/`

n−1)π1(k?) H1(π1(k?), T `)

0 T
π1(k′)

` (T`/`
n)π1(k′) (T`/`

n−1)π1(k′) H1(π1(k′), T `).

' '

By the induction hypothesis the first and the third vertical arrows are isomorphisms for ` ≥ A. By elementary

diagram chasing it is enough to show that H1(π1(k?)/π1(k′), T
π1(k′)

` ) = 0. But since T
π1(k?)

` = T
π1(k′)

` one has

H1(π1(k?)/π1(k′), T
π1(k′)

` ) = H1(π1(k?)/π1(k′), T
π1(k?)

` ) = Hom(π1(k?)/π1(k′), (Z/`)r) = 0

where the last equality follows from the fact that ` > d = |π1(k?)/π1(k′)|.

3. PROOF OF THEOREM 1.1.2.1

3.1. Proof of Theorem 1.1.2.1. Retain the notation and the assumption of Proposition 1.1.2.1. For every finite
field extension k ⊆ k′ and every (k/k′)-form Y of X , write Yk := Y ×k′ k and

T`(Y ) := lim←−
n

Br(Yk)[`n]; M`(Y ) := T`(Y )⊗Q`/Z`; M(Y ) :=
∏
` 6=p

M`(Y );

H2
` (Y ) := H2(Yk,Z`(1)); Hi(Y ) := {H2

` (Y )}.

3.1.1. Reducing to the Tate module of the Brauer group. Recall (see e.g. the proof of [CaCha18, Proposition
2.1.1]) that there is a π1(k′)-equivariant exact sequence

0→M`(Y )→ Br(Yk)[`∞]→ H3(Yk,Z`(1))[`∞]→ 0.

Since
• for every prime ` 6= p, the group H3(Yk,Z`(1))[`∞] = H3(Xk,Z`(1))[`∞] is finite (of cardinality

depending only on X) and
• for `� 0 (depending only on X) one has H3(Yk,Z`(1))[`∞] = H3(Xk,Z`(1))[`∞] = 0 ([Ga83]);

it is enough to prove Theorem 1.1.2.1 replacing Br(Yk)[p′] with M(Y ).
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3.1.2. Compatibility. We now prove that T (Y ) is a compatible system of π1(k′)-modules. Write NS(Yk) for the
Néron-Severi group of Yk. By the Kummer exact sequence

0→ NS(Yk)⊗ Z` → H2
` (Y )→ T`(Y )→ 0,

it is enough to show that H2 and NS(Y ) := {NS(Yk) ⊗ Z`} 6̀=p are compatible systems of π1(k′)-modules.
Write Fq′ for the algebraic closure of Fq in k′. By spreading out, there exists a geometrically connected smooth
Fq′ -variety K′, with generic point η′ : Spec(k′) → K′, and a smooth proper morphism f : Y → K′ fitting into a
commutative cartesian diagram:

Y Y

Spec(k′) K′.

� f

η′

By smooth proper base change, the action of π1(k′) onH2
` (Y ) factors through the surjection π1(k′) � π1(K′) and

by [De80] the collection H2(Y ) is a Q-rational compatible system. Since homological and algebraic equivalences
coincide rationally for divisors,NS(Yk)⊗Q identifies with the image of the cycle class map cYk

: Pic(Yk)⊗Q→
H2
` (Y )⊗Q`. SoNS(Y ) is a compatible system of π1(k′)-modules, hence T (Y ) is a compatible system of π1(k′)-

modules as well.

3.1.3. End of the proof. So we can apply Propositions 1.2.2.1 and 1.2.2.2 to T (Y ). Hence, to conclude the
proof, we have just to adjust the arguments in [OSk18, Section 5.4], replacing [OSk18, Propositions 5.4 and 5.5]
with Propositions 1.2.2.1 and 1.2.2.2. Write r := RankZ`

(T`(X))2 and set BX := |GLr(Z/`0)|. By Proposition
1.2.2.1 forXk′ there exists a finite field extension k′ ⊆ kY of degree≤ BX such that there is an π1(kY )-equivariant
isomorphism M(Y ) 'M(X). Then one has:

M(X)π1(k) ⊆M(X)π1(kY ) 'M(Y )π1(kY ) ⊇M(Y )π1(k′).

Since T (X, `) holds for every prime ` 6= p, by Fact 1.1.1.2 the group M(X)π1(kY ) is finite. Hence it is enough to
show that, for every integer d ≥ 1, there exists a constant C := C(X, d) such that for every finite field extension
k ⊆ k′′ of degree≤ d one has M(X)π1(k′′) ≤ C. To prove this, one may replace k with a finite extension and then
apply Proposition 1.2.2.2 to conclude.

3.2. Further remarks. Let k be an infinite finitely generated field of characteristic p ≥ 0.

3.2.1. Torsion of abelian varieties. Let X be a k-abelian variety of dimension g. By the Lang-Néron theorem
[LanN59], the group X(k′)tors is finite for every finite field extension k ⊆ k′ and, if X has no isotrivial geometric
isogeny factors, then the same is true for every field extension of kF. One can use Propositions 1.2.2.1 and 1.2.2.2
with the techniques in Section 3.1 to prove uniform boundedness results for the torsion of the forms of abelian
varieties. More precisely, one can prove that for every integer d ≥ 1, (resp. ifX has no isotrivial geometric isogeny
factors) there exists an integer C := C(X, d) such that |Y (k′)| ≤ C for every finite extension of fields k ⊆ k′

(resp. kF ⊆ k′) of degree≤ d and every k′-abelian variety Y that is a (k/k′) form of X . We conclude pointing out
that the statement for abelian varieties over k follows also from the Lang-Weil bound and the specialization theory
for torsion of abelian varieties.

3.2.2. Abelian varieties with CM. Recall that a k-abelian variety X has complex multiplication (or CM for short)
if the image of the representation π1(k)→ GL(T`(X)) contains an abelian open subgroup. In characteristic zero,
Orr-Skorobogatov ([OSk18, Corollary C.2]) prove that there is a constant C = C(d, g) such that |Br(Xk)π1(k)| ≤
C for every g-dimensional abelian variety with CM defined over a number field k of degree ≤ d. This result is a
consequence of the characteristic zero analogue [OSk18, Theorem 5.1] of Theorem 1.1.2.1 and of the fact ([OSk18,
Theorem A]) that there are only finitely many Q-isomorphism classes of g-dimensional abelian varieties with CM
defined over a number field of degree ≤ d. Unfortunately, as Akio Tamagawa pointed out to us, the positive
characteristic analogue of [OSk18, Theorem A] is false: if X is the product of g > 1 supersingular elliptic curves,
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the k-isogeny class of X contains infinitely many3 k-abelian varieties that are not isomorphic over k. So there is
no hope to deduce directly from Theorem 1.1.2.1 the analogue of [OSk18, Corollary C.2] in positive characteristic.
However, a positive characteristic version of [OSk18, Corollary C.2], via different techniques, has been announced
by Marco D’Addezio.
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3Indeed, there is an inclusion α2
p ⊆ X . Since k is infinite, the set I := Homk(αp, αp × αp)/Autk(αp) ' P1(k) is infinite. For each

i ∈ I define fi : X → Xi := X/i(αp). Assume by contradiction that the Xi,k fall into finitely isomorphism many classes. Then there exist
i0 and an infinite subset J ⊆ I such that, for every j ∈ J , there is an isomorphism gj : Xj,k → Xi0,k

. Then, gj ◦ fj : Xk → Xi0,k
is a map of degree p. Since there are only finitely many maps Xk → Xi0,k

of degree p , there exists an infinite subset J ′ ⊆ J such that
gj ◦ fj = gj′ ◦ fj′ for every j, j′ ∈ J ′. But this implies j(αp) = j′(αp) and this is a contradiction.
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