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ABSTRACT. Let k be an algebraically closed field of characteristic p ≥ 0 and V a faithful k-
rational representation of an ℓ-group G. The Noether’s problem asks whether V/G is stably bira-
tional to a point. While if ℓ = p it is well-known that V/G is always rational, when ℓ ̸= p, Saltman
and then Bogomolov constructed ℓ-groups for which V/G is not stably rational. Hence, the geom-
etry of V/G depends heavily on the characteristic of the field. We show that for all the groups G
constructed by Saltman and Bogomolov, one cannot interpolate between the Noether problem in
characteristic 0 and p. More precisely, we show that it does not exist a complete valuation ring R
of mixed characteristic (0, p) and a smooth proper R-scheme X → Spec(R) whose special fiber
and generic fiber are both stably birational to V/G. The proof combines the integral p-adic Hodge
theoretic results of Bhatt-Morrow-Scholze with the study of indefinitely closed differential forms
in positive characteristic.
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1. INTRODUCTION

1.1. Noether problem. Let G be a finite group and let k be an algebraically closed field of
characteristic p ≥ 0. Recall that two (irreducible) k-varieties X,Y are said to be stably birational
if X × Pn

k is birational to Y × Pm
k for some n,m ∈ N. If X is stably birational to a point, we

say that X is stably rational. We write Stab(k) for the set of varieties up to the stably birational
equivalence relation and for a k-variety X we write [X]k ∈ Stab(k) for its class in Stab(k).

Let G→ GL(V ) a faithful (finite-dimensional) representation of G. It is well known ([BK85,
Lemma 1.3]) that X := V/G is a normal unirational variety whose stably birational class [G]k
does not depend on the chosen faithful representation of G. Knowing more about [G]k is a
fundamental question in algebraic geometry that dates back to Emmy Noether ([Noe17]), when
she asked whether [G]k = [{Spec(k)}]k, which is now known as the Noether’s problem for
(G, k).

1.1.1. Dependence on the field. We remark that when k is not algebraically closed, there might be
arithmetic obstructions to the Noether problem. For instance, Fischer theorem [Fis15] asserts that
V/G is always rational when G is cyclic and k = Q, whereas Swan’s original counterexample
[Swa69] to the Noether problem uses G = Z/47Z and k = Q. We will focus on the case of an
ℓ-group G, where ℓ is a prime number, and k is algebraically closed. In this case, the Noether’s
problem for G heavily depends on p := char(k). Indeed, while a well-known result (see e.g.
[Kun54] and [Gas59]) states that [G]k = [{Spec(k)}]k if ℓ = p, there are many ℓ-groups G with
ℓ ̸= p for which the Noether problem has a negative answer.
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The most relevant for our purposes are the ones constructed by Saltman in [Sal84] and Bo-
gomolov (refining Saltman’s techniques) in [Bog88]. Both these examples are over C, and use
the non-triviality of the unramified Bruaer group to deduce that the quotient variety is not stably
rational. Other examples using the third unramified cohomology have been constructed more
recently by Peyre in [Pey08].

Since many techniques to study rationality problems are based on specialization methods both
in equicharacteristic and in mixed characteristic (see e.g. [Voi15], [CTP16], [Tot16]) and the
geometry of [G]k heavily depends on p, it seems interesting to understand whether one can spe-
cialize the Noether’s problem for a group G from characteristic zero to positive characteristic.
More precisely, let R be a complete valuation ring of mixed characteristic (0,p) with algebraically
closed fraction field K and residue field k.

Definition 1.1.1. Let G be a p-group. We say that the Noether problem for G has good-reduction
at p if there exists a smooth projective scheme X/R whose generic fibre has stable birational
class [G]K and whose special fibre has stable birational class [G]k (and hence is stably rational)
for some R as above.

When [G]K = [Spec(K)]K , one can take Pn
R as a smooth projective model, so the question can

be interesting only when [G]K ̸= [Spec(K)]K . As shown in Section 3, adapting the constructions
in [HPT18] and following a suggestion of Colliot-Théléne, irrational varieties can have good
rational reduction modulo p. Hence, understanding for which p-groups G the Noether problem
has good-reduction at p is a non-trivial problem.

As a corollary of our main Theorem 1.2.2.1, we get the following non-existence result.

Corollary 1.1.2. For all the p-groups G constructed in [Sal84] and in [Bog88] the Noether
problem does not have good reduction at p.

If one considers Pn
R together with a R-linear action of G such that the induced action on Pn

k is
faithful, Corollary 1.1.2 implies that one cannot resolve the singularities of Pn

R/G over R in all
these cases.

1.2. Stably Birational invariants. The main ingredient to prove Corollary 1.1.2 is the study
certain stably-birational invariants. To introduced them, let X be a smooth proper variety over an
algebraically closed field L.

1.2.1. Extremal Hodge number. By [CR11] and the Künneth formula for de-Rham cohomology,
the extremal Hodge number of X

h0,i := dim(Hi(X,OX)) hi,0 := dim(H0(X,Ωi
X))

are stably birational invariants1. These can be used to obstruct the existence of families of Kum-
mer surfaces in mixed characteristic (0, 2) leading to results similar to Corollary 1.1.2. More pre-
cisely, let R be a complete DVR of mixed characteristic (0, 2) and A → Spec(R) be an abelian
scheme of relative dimension 2 with supersingular special fiber Ak. By [Kat78], the Kummer
surface Kum(Ak) is a rational variety, hence H0(Kum(Ak),Ω

2) = 0, while Kum(AK) is a K3-
surfaces, hence H0(Kum(AK),Ω2) = K. Hence, by semicontinuity of coherent cohomology,
there does not exist a smooth proper R-scheme Y → Spec(R) such that [Yk]k = [Kum(Ak)]k
and [YK ]K = [Kum(AK)]K .

Remark 1.2.1. On the positive side, let us point out that a recent result of Lazda-Skorobogatov
([LS22]) shows that if Ak is not supersingular then such a model exists. So the extremal Hodge
numbers of Kum(Ak) are the only obstruction to the construction of a mixed characteristic family
interpolating the Kummer construction.

1More precisely, the birational invariance of hi,0 follows from Hartogs’ lemma, while the birational invariance h0,i

follows from the Hodge symmetry in characteristic 0 and from the main result of [CR11] in positive characteristic. To
pass from birational to stable birational invariance, one uses the Künneth formuma for de-Rham cohomology.
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1.2.2. Artin-Mumford invariant. These arguments cannot be used to study smooth proper vari-
eties birational to V/G, since all of their extremal Hodge numbers vanish in characteristic 0.

Let Br(X) be the Brauer group of X and Br(X)div the maximal divisible subgroup of Br(X).
Let ℓ be a prime different from the characteristic of L. By the stably birational invariance of
the Brauer group, also the group H3

et(X,Zℓ)[ℓ] ≃ Br(X)/Br(X)div[ℓ] is a stable birational
invariant for smooth proper varieties. It is usually called the ℓ-adic Artin-Mumford AMℓ([X]L)
of [X]L ∈ SB(L).

The way in which Saltman (and then Bogomolov) proved that [G]L ̸= [{Spec(L)}]L, for L of
characteristic 0, was by showing that AMℓ([G]L) ̸= 0 for his particular choice of G. Our main
result is that the presence of such obstruction to stable rationality also prevents the specialization
to a smooth projective, stably rational variety in characteristic p:

Theorem 1.2.2.1. Let R be a complete valuation ring of mixed characteristic (0,p) with alge-
braically closed fraction field K and residue field k. Let X → R be a smooth proper R-variety
whose special fiber is stably rational. Then H3(XK ,Zp)[p] = 0

In particular, H3(XC,Z)[p] = 0 for any embedding K ⊂ C. Corollary 1.1.2 follows then
directly from Theorem 1.2.2.1 and the discussion above it.

1.3. Integral p-adic Hodge theory. To state the second main result of the paper, we explain our
strategy to prove Theorem 1.2.2.1, of which we retain the notation. For every prime ℓ ̸= p, the
smooth proper base change theorem shows that

H3(XK ,Zℓ)[ℓ] ≃ H3(Xk,Zℓ)[ℓ] = 0,

where the last equality follows from the stable birational invariance of H3(Xk,Zℓ)[ℓ] and the
assumption on Xk.

For p-adic coefficients, the smooth proper base change theorem does not hold except in a few
special cases, but it can be replaced with the recent developments in integral p-adic Hodge theory
by Bhatt-Morrow-Scholze. By [BMS18, Theorem 1.1 (ii)], one has the following inequality

(1.3.1) dimk(H
3
crys(Xk)[p]) ≥ dimFp(H

3
et(XK ,Zp)[p]),

where H3
crys(Xk) := H3

crys(Xk/W ) is the third integral crystalline cohomology group of Xk,
and which will play the role of the semicontinuity theorem used in the Kummer surface examples
(Section 1.2.1).

1.3.1. Torsion in crystalline cohomology. Thanks to (1.3.1), to prove Theorem 1.2.2.1 it would
be enough to show that dimk(H

3
crys(Xk)[p]) is a stably birational invariant. While this would

follow easily from a strong form of resolution of singularities (in particular, weak factorization
of birational maps) it is unclear how to prove it without assuming it. The main issue is that
crystalline cohomology with integral coefficient is very badly behaved for open varieties, so the
standard techniques used in characteristic zero do not work anymore.

Nevertheless, we prove something slightly weaker, but which is strong enough to imply Theo-
rem 1.2.2.1.

Theorem 1.3.1. Let k be an algebraically closed field of characteristic p and X a smooth proper
k-variety. Assume that

(1) h0,i
X = hi,0

X = 0 for 1 ≤ i ≤ 3,
(2) Br(X) = 0.

Then H3
crys(X/W )[p] = 0.

Since, as already mentioned, the assumptions of Theorem 1.3.1 are satisfied if X is stably
rational (or, more generally, if X admits a decomposition of the diagonal) Theorem 1.3.1 and the
inequality (1.3.1) imply Theorem 1.2.2.1.
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The crucial point in the proof of Theorem 1.3.1 is to show that, under the hypothesis of the
theorem, the cycles class map

CldR : NS(X)⊗ k → H2
dR(X)

is an isomorphism, hence that a version of the Hodge conjecture for divisors holds. To prove
this, the main idea to use indefinitely closed differential forms to cut out a well-behaved piece of
the second de-Rham cohomology group of X . Under the assumption of Theorem 1.3.1, we then
show that there are enough of these forms to generate the whole cohomology and, combining this
with the theory of the de-Rham Witt complex, we get Theorem 1.3.1.

1.4. Acknowledgement. The authors are grateful to Stefan Schreieder for having introduced the
second named author to the Noether problem, to Giuseppe Ancona for many interesting discus-
sions and comments on a preliminary version of the article, and to Colliot-Théléne for pointing
us out the example in Section 3 .

2. PROOF OF THEOREM 1.3.1

In this section we prove Theorem 1.3.1 and so we retain the assumption and the notation
therein. For a, b, n ∈ N, set

ha,b := dimk(H
b(X,Ωa

X)) and hn
dR := dimk(H

n
dR(X)).

2.1. Preliminary reductions. We start observing that the universal coefficient theorem gives an
exact sequence

0→ H2
crys(X/W )/p→ H2

dR(X)→ H3
crys(X/W )[p]→ 0,

hence it is enough to show that the injection H2
crys(X/W )/p ↪→ H2

dR(X) is surjective. To prove
this, we use the commutative diagram

(2.1.1)

NS(X)⊗W H2
crys(X/W )

NS(X)⊗ k H2
dR(X),

Clcrys

CldR

in which the horizontal arrows are the cycle class maps for crystalline and de-Rham cohomology
and which shows that it is enough to prove that

(1) Clcrys : NS(X)⊗W
≃−→ H2

crys(X/W ) is an isomorphism and
(2) dimk(NS(X)⊗ k) ≥ h2

dR(X).

Remark 2.1.2. While it would be enough to prove directly that CldR : NS(X)⊗ k → H2
dR(X)

is surjective, we cannot prove it without passing through crystalline cohomology to show that
it is injective and then compare the dimensions. We remark that the equality of the dimensions
of NS(X) ⊗ k and H2

dR(X) is not enough to guarantee that the cycle class map is surjective or
injective, has shown by the example of supersingular K3 surfaces.

2.2. Proof of (1).

2.2.1. Preliminaries on the De-Rham Witt complex. Before starting with the proof of (1), we
recall what we need from the theory of the de-Rham Witt complex, which will be the main tool
to interpolate between the Néron-Severi group of X , its integral crystalline cohomology groups,
and its flat cohomology. In [Ill79] it is defined a k-linear complex

WΩ•
X : WΩ0

X = WOX
d−→WΩ1

X
d−→ . . .

d−→WΩd−1
X

d−→WΩd
X

of quasi coherent WOX -modules such that

Hn(WΩ•
X) ≃ Hn

crys(X),
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see [Ill79, Theorem 1.4, Pag. 606]. If X is clear from the context, we remove the subscript and
we write just WΩi

We let WΩ≥i to be the naive truncation of the complex at i, so that there is a short exact
sequence

(2.2.1.1) 0→WΩ≥1 →WΩ• →WOX → 0

of complexes. Let σ be the lift of the Frobenius of k to W (k). The complex WΩ•
X and the

sheaves WΩi
X are endowed with a natural σ-semilinear endomorphism2 F : WΩ•

X → WΩ•
X ,

see [Ill79, Section 2.19, Pag 564]. We write F : WΩ•
X →WΩ•

X for the morphism which is piF
is degree i and F ′ for the one which is pi−1F in degree i, see [Ill79, Scholie 2.8., Pag 610] and
[Ill79, Corollary 3.29, Pag 582] respectively.

By [Ill79, (5.5.2), Pag 627], there is an exact sequence

(2.2.1.2) · · · → Hi
fl(X,Zp(1))→ Hi(X,WΩ≥1)

1−F ′

−−−→ Hi(X,WΩ≥1)→ . . .

where
Hi

fl(X,Zp(1)) := lim←−
n

Hi
fl(X,µpn).

2.2.2. Proof of (1). The cycle class map NS(X) → H2
crys(X) factors trough the morphism

H1(X,WΩ≥1) → H2(X,WΩ•) ≃ H2
crys(X) induced by the inclusion WΩ≥1 ⊆ WΩ• and

the Kummer exact sequence for the flat topology

(2.2.2.1) 0→ µpn → Gm
pn

−→ Gm → 0

induces ([Ill79, (5.8.5), Pag. 629]) an injection

Clfl : NS(X)⊗ Zp ↪→ H2
fl(X,Zp(1))

fitting into a commutative diagram

(2.2.2.2)

NS(X)⊗ Zp NS(X)⊗W (k)

H2
fl(X,Zp(1)) H2(X,WΩ≥1) H2

crys(X),

Clfl Clcrys
Clcrys

in which the bottom left arrow is induced from the exact sequence (2.2.1.2) and bottom right one
is induced by the exact sequence (2.2.1.1).

Since 0 = Br(X) ≃ H2
fl(X,Gm), the exact sequence (2.2.2.1) shows that Clfl : NS(X) ⊗

Zp ↪→ H2
fl(X,Zp(1)) is an isomorphism. Hence, it is enough to show that both the natural maps

H2
fl(X,Zp(1))⊗W −→ H2(X,WΩ≥1) −→ H2(X,WΩ•)(≃ H2

crys(X))

are isomorphisms. To be able to prove this, we will prove the following slightly stronger facts:
(a) the map H2

fl(X,Zp(1))⊗W −→ H2(X,WΩ≥1) is an isomorphism
(b) the map Hi(X,WΩ≥1)→ Hi(X,WΩ•) is an isomorphism for 1 ≤ i ≤ 2

Prove first (b) and then (a), since knowing (b) will be important to prove (a).
(b) Using the exact sequence

0→WΩ≥1
X →WΩ•

X →WOX → 0,

we reduce to show that Hi(X,WOX) = 0 for 1 ≤ i ≤ 2. By [Ill79, (4.1.1), Pag 620],
there exists an exact sequence

0→WOX
V−→WOX → OX → 0,

2In [Ill79], F is denoted with F, but we prefer this notation to make clearer the difference between F and F
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where V is the Verschiebung morphism. So, since Hi(X,OX) = 0 for 1 ≤ i ≤ 3,
the morphism V : Hi(X,WOX)

V−→ Hi(X,WOX) is an isomorphism for 1 ≤ i ≤ 2.
On the other hand, by [Ill79, Corollaire 2.5, Pag. 609], Hi(X,WOX) is topologically
separated for the topology induced by V , hence, for 1 ≤ i ≤ 2,

0 =
⋂
n

V n(Hi(X,WOX)) =
⋂
n

Hi(X,WOX) = Hi(X,WOX).

(a) By point (b), the W (k)-module H2(X,WΩ≥1) ≃ H2(X,WΩ•) is finitely generated,
hence by [Ill79, Lemme 6.8.4, Pag 643] and the exact sequence (2.2.1.2) it is enough to
show that

Ker(1−F ′) = H2
fl(X,Zp(1)) and F ′ : H2(X,WΩ≥1)→ H2(X,WΩ≥1) is an isomorphism.

Since, by (b), also H1(X,WΩ≥1) is a finitely generated W (k)-module, the morphism
1−F ′ : H1(X,WΩ≥1)→ H1(X,WΩ≥1) is surjective by [Ill79, Lemma 5.3, Pag 627],
so that the equality on the left follows from the exact sequence (2.2.1.2) We are left to
show that F ′ : H2(X,WΩ≥1) → H2(X,WΩ≥1) is an isomorphism. Since the natural
map H2(X,WΩ≥1)→ H2(X,WΩ•) is an isomorphism by point (b), this would follow
from [Ill79, Corollaire 5.20, Pag 636], once we verify its assumptions. To this end, we
have to check that
• H0(X,Z1

X) = H0(X,Ω1
X), where Z1

X ⊆ Ω1
X is the subsheaf of closed forms,

which holds since H0(X,Ω1
X) = 0 by assumption;

• H2
crys(X/W )[p] = 0, which holds since h0,1 = h1,0 = 0 = H1

dR(X) by assump-
tion, so that the universal coefficients theorem implies H2

crys(X/W )[p] = 0;
• the F-crystals H2

crys(X/W ) is purely of slope 1, which holds since, thanks to vanish-
ing of Br(X), the Picard rank of X is equal to b2(X) = dimK(H2

crys(X/W )⊗Q),
hence the cycle class map NS(X)⊗K → H2

crys(X)⊗Q is surjective.
This concludes the proof of (1).

2.3. Proof of (2). In this subsection, to avoid double subscripts, we will write

Ωa
X := Ωa(X).

2.3.1. Preliminary reduction. Let Ωi
log(X) ⊆ Ωi(X) be the abelian subsheaf generated by dlog(x1)∧

dlog(x2) · · · ∧ dlog(xi), where the xi’s are local sections of O∗
X . By [Ill79, Proposition 3.23.2,

Pag. 580], there is a natural isomorphism Ω1
log(X) ≃ O∗

X/(O∗
X)p, hence, by [Ill79, (5.1.4), Pag.

626], there is a natural isomorphism

H2
fl(X,µp) ≃ H1(X,Ω1

log(X)).

On the other hand, by the Kummer exact sequence (2.2.2.1) and the assumption on Br(X), one
has NS(X)⊗ Z/pZ ≃ H2

fl(X,µp). Hence it is enough to prove that

dim(H1(X,Ω1
log(X)⊗ k)) ≥ h2

dR.

The Hodge to de-Rham spectral sequence

Ea,b
1 := Hb(X,Ωa)⇒ H2

dR(X)

together with the assumption h0,1 = h1,0 = 0, shows that h1,1 ≥ h2
dR, hence it is enough to show

that

(2.3.1.1) dim(H1(X,Ω1
log(X))⊗ k) = h1,1.

The main problem in proving (2.3.1.1) is that it is unclear how to understand the cokernel of the
inclusion Ω1

log(X) ⊆ Ω1(X) so we need to interpret in a different way Ω1
log(X) to give it a better

description in terms of differential forms. This will be done in the next section, by using a result
of Raynaud (Theorem 2.3.2.3) on indefinitely closed differential forms.
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2.3.2. Indefinitely closed differential forms. In this section, we mainly follow [Ill79, 0, Sections
2.2,2.4]. Consider the commutative cartesian diagram

X

X(1) X

k k

FX/k

FX

Fk×Id

□
Fk

in which Fk, FX are the absolute Frobenii and FX/k is the relative Frobenius of X/k. Set

Zi(X) := Ker(d : Ωi(X)→ Ωi+1(X)); Bi(X) := Im(d : Ωi−1(X)→ Ωi(X)); Hi(X) =
Zi(X)

Bi(X)
.

Then one has ([Ill79, Theoreme 2.1.9, Pag. 515]) a canonical isomorphism of graded OX(1) -
algebras

(2.3.2.1) C−1
X/k : Ω•(X(1)) ≃ H•(X)

called the Cartier isomorphism, so that there exists a canonical exact sequence

0→ B•(X)→ Z•(X)
CX/k−−−→ Ω•(X(1))→ 0.

We now define, for every integer n ≥ 0, abelian subsheaves of Ω•
X by induction on n. For

n = 0, 1 set

Bi
0(X) := 0, Bi

1(X) := Bi(X), Zi
0(X) := 0, Zi

1(X) := Zi(X),

and for n > 1 we let Bi
n+1(X) and Zi

n+1 be defined by following commutative cartesian dia-
grams

Bi
n+1(X) Zi(X) Zi

n+1(X) Zi(X)

Bi
n(X

(1)) Ωi(X(1)) Hi(X), Zi
n(X

(1)) Ωi(X(1)) Hi(X),

□ □
C−1

X/k
C−1

X/k

and we call Bi
n(X) ⊆ Zi

n(X) the sheaf of i-form that are n-exact and n-closed respectively. By
construction (see [Ill79, Pag. 519-520]) there is a chain of inclusions

0 ⊆ Bi
1(X) ⊆ Bi

2(X) ⊆ · · · ⊆ Bi
n(X) ⊆ · · · ⊆ Zi

n+1(X) ⊆ Zi
n(X) ⊆ · · · ⊆ Zi

2(X) ⊆ Zi
1(X) ⊆ Ωi(X)

Finally, set ⋃
n∈N

Bi
n := Bi

∞(X) ⊆
⋂
n∈N

Zi
n(X) := Zi

∞(X)

which we call the sheaves of i-form that are indefinitely-exact and indefinitely-closed respectively.
Since k is perfect, there is a Cartier morphism CX : Zi(X) → Ωi(X) (see e.g. [Ill79,

(2.1.21), Pag. 518] which, by [Ill79, Section 2.5.1, Pag. 531], sends Zi
∞(X) to itself, hence it

induces an endomorphism of CX of Zi
∞(X). By [Ill79, (2.5.3.3) Pag. 532], there is a canonical

decomposition

(2.3.2.2) Zi
∞(X) = Bi

∞(X)⊕ (Zi
∞(X))ss,

where (Zi
∞(X))ss is characterized by the fact that for every open affine subset U ⊆ X the vector

space (Zi
∞(X))ss(U) identifies with union of the finite-dimensional subspaces of Zi

∞(U) stable
under C and on which C is an automorphism.

With this notation, we can recall from [Ill79, (2.5.3.5) Pag. 533] the main result we will use.

Theorem 2.3.2.3 (Raynaud). There is a natural isomorphism of sheaves

Ωi
log(X)⊗ k ≃ (Zi

∞(X))ss.
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2.3.3. Proof of (2.3.1.1). We can now prove (2.3.1.1). Thanks to Theorem 2.3.2.3 it is enough to
prove that

(2.3.3.1) dimk(H
1(X,Z1

∞(X))ss)) = h1,1.

To conclude to proof, we show that there is a chain of isomorphisms:

H1(X,Ω1(X))
(i)
≃ H1(X,Z1(X))

(ii)
≃ H1(X,Z∞(X))

(iii)
≃ H1(X,Z1

∞(X)ss).

We prove first (i), then (iii) and then (ii).
(i) By taking the long exact sequence associated with the short exact sequence

0→ OX
(−)p−−−→ OX

d−→ B1(X)→ 0,

one sees that the assumptions on X imply that

(2.3.3.2) Hi(X,B1(X)) = 0 for 0 ≤ i ≤ 2.

Then the exact sequence

0→ B1(X)→ Z1(X)
C−→ Ω1(X(1))→ 0

shows that

H1(X,Z1(X)) ≃ H1(X(1),Ω1(X(1))) ≃ H1(X,Ω1(X))),

where the last equality follows from the perfectness of k.
(iii) Thanks to the decomposition (2.3.2.2), one has

H1(X,Z1
∞(X)) = H1(X,B1

∞(X))⊕H1(X, (Zi
∞(X))ss),

so that it is enough to show that

H1(X,B1
∞(X)) = 0.

Since
B1

∞(X) =
⋃
n∈N

B1
n(X) = lim−→

n

B1
n(X)

one has
H1(X,B1

∞(X)) = lim−→
n

H1(X,B1
n(X)),

hence it is enough to show that Hi(X,B1
n(X)) = 0 for every n and 0 ≤ i ≤ 2. We

prove this by induction on n, the case n = 1 being (2.3.3.2). So assuming that n > 1
and Hi(X,B1

m(X)) = 0 for every m ≤ n and 0 ≤ i ≤ 2 we have to show that
Hi(X,B1

n+1(X)) = 0. By [Ill79, End of page 531], one has a commutative diagram
with exact rows

(2.3.3.3)

0 B2
1(X) B2

n(X) B2
n−1(X) 0

0 B2
1(X) B2

n+1(X) B2
n(X) 0,

C−1

C−1

which, taking the associated long exact sequence, shows the induction step.
(ii) Since

Z1
∞(X) =

⋂
n∈N

Z1
n(X) = lim←−

n

Z1
n(X),

by [Jan88, Proposition 1.6] there is a canonical exact sequence

0→ lim←−
n

1(H0(X,Z1
n(X)))→ H1(X,Z1

∞(X))→ lim←−
n

H1(X,Z1
n(X))→ 0.

Since H0(X,Z1
n(X))) ⊆ H0(X,Ω1(X))) = 0 by assumption, it is enough to prove

that the map H1(X,Z1
n+1(X)) → H1(X,Z1

n(X)) induced by the inclusion Z1
n(X) ⊆
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Z1
n−1(X) is an isomorphism. To prove this, we first remark that, by [Ill79, Pag. 531]

there is an exact sequence

0→ B1
n(X)→ Z1

n+1(X)
C−→ Z1

n(X)→ 0,

hence, by (2.3.3.2), one gets dim(H1(X,Zn+1(X))) = dim(H1(X,Zn(X))), so that
we are reduced to show that H1(X,Z1

n+1(X)) → H1(X,Z1
n(X)) induced by the in-

clusion Z1
n+1(X) ⊆ Z1

n(X) is injective. By [Ill79, (2.2.6.2), Pag 520], the inclusion
Z1
n+1(X) ⊆ Z1

n(X) sits in an exact sequence

0→ Z1
n+1(X)→ Z1

n(X)→ B2
n+1(X)/B2

n(X)→ 0,

so that it is enough to show that H0(B2
n+1(X)/B2

n(X)) = 0. The diagram (2.3.3.3)
shows that

B2
n+1(X)/B2

n(X) ≃ B2
n(X)/B2

n−1(X) ≃ B2
1(X)/B2

0(X) ≃ B2(X).

Hence

H0(X,B2
n+1(X)/B2

n(X)) ≃ H0(X,B2(X)) ⊆ H0(X,Ω2(X)) = 0.

This concludes the proof of (2) and hence of Theorem 1.3.1.

3. A STABLY IRRATIONAL VARIETY REDUCING TO A RATIONAL VARIETY

Let R be the ring of integers of K := Cp and k its residue field. In this last section, we
show how to construct, for every p ≫ 0, examples of smooth projective schemes X/R such
that XK is not stably-rational and such that Xk is rational, as it was suggested to us by Colliot-
Thélène. The construction uses and it based on the analogous construction in [HPT18] of a family
of smooth proper varieties over the complex number with stably irrational general fiber but with
some rational fiber.

3.1. A general lemma. We begin with a general lemma, which reduces the construction of ex-
amples to the construction of mixed characteristic families with easier-to-check properties. Let
B/R be smooth with geometrically integral fibres and X → B a smooth projective family of
varieties.

Lemma 3.1.1. Assume that there exists a point b ∈ B(Cp) such that Xb is not stably-rational.
Then, for every a ∈ B(k) there exists a lift b′ ∈ B(R) of a such that Xb′ is not stably rational.

Proof. By [NO21, Corollary 4.1.2], the set

B(Cp)r := {b ∈ B(Cp) : Xb is stably-rational}
is a countable union of closed subvarieties. Define now B(Cp)nr := B(Cp) \ B(Cp)r. By the
assumption on b, the set B(Cp)r is the countable union of proper closed subvarieties.

Since, by Hensel lemma, the map π : B(R)→ B(k) is surjective we can choose a lift b′′ of a.
The set π−1(a) ⊆ B(R) ⊆ B(K) is an open neighborhood of b′′ in B(K). Since B(Cp)r is the
countable union of proper closed subvarieties, we can apply [MP12, Lemma 4.29] to deduce that
there exists a b′ ∈ B(Cp)nr ∩ π−1(a). This concludes the proof. □

3.2. An example. By Lemma 3.1.1, to construct a smooth projective scheme X/R such that XK

is not stably-rational and such that Xk is rational, it is enough to construct a family X → B over
R such that there exist points b ∈ B(Cp) and a ∈ B(k) such that Xb is stably irrational and Xa is
rational. Such a family can be constructed using directly Hassett, Pirutka, and Tschinkel example
[HPT18], see also [CTS21, Section 12.2.2] and [Sch19]. We give some details.

Let X ′ → Z be the universal family of quadric bundles over P2
Q given in P3

Q×P2
Q by a bihomo-

geneous form of bidegree (2, 2). After choosing coordinates x, y, z and U, V,W, T on P3
Q × P2

Q,
the variety Z identifies with the space of bihomogeneous forms F = F (x, y, z, U, V,W, T ) of
bidegree (2, 2) in P2

Q × P3
Q which are symmetric quadratic forms in the variables U, V,W, T ,
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since any such F determines a quadratic bundle over P2
Q via the projection P2

Q × P3
Q → P2

Q. In
turn, these forms are given by a 4 × 4 symmetric matrix A = (ai,j)1≤i,j≤4 where each entry
ai,j = ai,j(x, y, z) is a homogeneous polynomial of degree 2.

By the arguments in [Sch19] and Bertini theorem, there exists a dense open Zariski BQ ⊂ Z
such that the restriction of the family XQ → BQ to BQ parametrizes conic bundle flat over P2

Q
and with smooth total space.

By spreading out, this construction extends to give a smooth family X → B over Z[1/n]
for n big enough whose base change to Q identifies with XQ → BQ. By the main result of
[HPT18], the general fiber of X(C) → B(C) is not stably rational, hence, for every p, there
exists a b ∈ B(Cp) such that Yb is not stably rational. So, we are left to show that for p ≫ 0,
there exists a a ∈ B(Fp) such that Xa is rational.

Using Bertini, there exists of a rational point r ∈ B(Q) such that the corresponding 4 × 4
symmetric matrix A = (ai,j)1≤i,j≤4 has a1,1 = 0. By spreading out we can choose p ≫ 0
such that r ∈ B(Q) extends to a point ã ∈ B(Zp) whose reduction a modulo p defines a flat
conic bundle Xa → P2

Fp
with smooth total space, whose associated matrix has a1,1 = 0. Since

a1,1 = 0, the morphism Xa → P2
Fp

has a rational section, hence Xa is rational. This concludes
the construction of a smooth proper scheme over R with rational special fiber and stably irrational
generic fiber.
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