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Abstract. Let K be a finite extension of Qp and X a smooth proper K-variety with good
reduction. Under a mild assumption on the behaviour of Hodge numbers under reduc-
tion modulo p, we prove that the existence of a non-zero global 2-form on X implies
the existence of p-torsion Brauer classes with surjective evaluation map, after a finite
extension of K. This implies that any smooth proper variety over a number field which
satisfies weak approximation over all finite extensions has no non-zero global 2-form.
The proof is based on a prismatic interpretation of Brauer classes with eventually con-
stant evaluation, and a Newton-above-Hodge result for the mod p reduction of prismatic
cohomology. This generalises work of Bright and the second-named author beyond the
ordinary reduction case.
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1. Introduction

Let K be a finite extension of Qp, with residue field k. Let X be a smooth proper
variety over K with good reduction. In this paper we use recent developments in p-adic
cohomology to show the existence (and in some cases construction) of p-torsion Brauer
classes of arithmetic interest.

1.1. Evaluation map. To be more precise, recall that each A ∈ Br(X) induces, for every
finite field extension L/K, an evaluation map

evL
A : X(L)→ Br(L) ≃ Q/Z

sending Q ∈ X(L) to Q∗A. Classes in the Brauer group of a variety over a number field
M with non-constant evaluation on the points over a completion of M obstruct weak
approximation for M-rational points (see e.g. [CS21, Chapter 13]). Hence, it is of arith-
metic interest to construct or show the existence of such classes. Brauer classes whose
evaluation maps remain non-constant over all finite extensions of K are necessarily of
transcendental nature, meaning that they do not vanish in Br(XK̄).
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In general, the construction of transcendental Brauer classes of arithmetic interest is
a hard problem. Over number fields, the first example of such a transcendental element
was given by Wittenberg in [Wit04]. Since then, only a handful of explicit examples of
transcendental elements obstructing weak approximation have been constructed, see e.g.
[HVV11; Ier10; Pre13; New16; New24; BV20; IS15; IS17; AN25].

It was only in [BN23, Theorem C] that a first general existence result was shown.
There, Bright and the second-named author show that, upon replacing K with a finite
field extension, transcendental classes with non-constant evaluation map exist as soon as
the reduction of the variety has a non-zero global 2-form and it is ordinary in the sense
of Bloch–Kato [BK86]. In [Pag25], the third-named author gives examples showing
how one can construct an element in the Brauer group obstructing weak approximation
starting from a non-zero global 2-form on the special fibre. These include some ex-
amples with non-ordinary reduction, indicating that the ordinary condition in [BN23,
Theorem C] is not necessary.

1.2. Main result. The goal of this paper is to extend the aforementioned result of Bright–
Newton, replacing the ordinary condition with the folllowing very mild condition on the
Hodge numbers of the special and generic fibres:

r dimk(Hi(Y,Ω j
Y/k)) = dimK(Hi(X,Ω j

X/K)) for every i, j ≥ 0,

where Y/k is the special fibre with respect to a smooth proper model of X.

Theorem 1.2.1. Let X be a smooth proper model of X with special fibre Y. Assume that r
holds. If H0(X,Ω2) , 0, then there exists a finite field extension L/K and A ∈ Br(XL)[p]
such that evF

A
: X(F)→ Br(F)[p] is surjective for every finite field extension F/L.

Since classes A ∈ Br(X) with prime-to-p order have constant evaluation map after a
finite extension, Theorem 1.2.1 gives classes of the smallest possible order.

If Z is a variety over a number field such that H0(Z,Ω2) , 0, then, by generic freeness,
the base change of Z to the completion at a place satisfies r for all but finitely many
places. As a consequence, in Corollary 1.2.2 below, we answer a question of Witten-
berg (see [BN23, Question 1.4]), which is a special case of his more general question
asking whether varieties over number fields that satisfy the Hasse principle and weak ap-
proximation over all finite extensions are geometrically rationally connected, hence have
vanishing extremal Hodge numbers.

Corollary 1.2.2. Let Z be a smooth proper variety over a number field satisfying weak
approximation over all finite extensions. Then H0(Z,Ω2) = 0.

Theorem 1.2.1 actually implies something stronger. To state it, let Z be a variety over
a number field M. We say that a place v of M is potentially relevant to the Brauer–Manin
obstruction to weak approximation on Z if there exist a finite extension N/M, a place v′

of N lying over v, and A ∈ Br(ZN) such that evNv′

A
is non-constant. Thus, A obstructs

weak approximation over N as soon as Z has an N-adelic point. Thanks to the invariance
of étale cohomology under algebraically closed field extensions, Theorem 1.2.1 implies
the following:

Corollary 1.2.3. Let Z be a smooth proper variety over a number field M such that
H0(Z,Ω2) , 0. Then all but finitely many places of M are potentially relevant to the
Brauer–Manin obstruction to weak approximation on Z.
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For some important class of varieties, such as abelian varieties, K3 surfaces, com-
plete intersections in products of projective spaces, assumption r is satisfied at all places
of good reduction for Z. By way of contrast with the ordinary reduction hypothesis
in [BN23, Theorem C], recall that if Z is an elliptic curve over Q, then, by [Elk87], there
are infinitely many places of supersingular reduction (of positive density if Z has com-
plex multiplication), while for abelian varieties of dimension ≥ 4, the existence of primes
of good ordinary reduction is still an open question.

The methods used in the proof of Theorem 1.2.1 allow us to go beyond merely show-
ing the existence of arithmetically interesting Brauer classes. For products of elliptic
curves, we show how to construct such classes, generalising previous constructions in
the literature, see Proposition 1.5.1 and Corollary 6.2.3. For abelian varieties of positive
p-rank and their associated Kummer varieties, we give lower bounds for the number of
interesting Brauer classes, see Theorem 1.5.3. In particular, our results show that there
are often more interesting classes in the non-ordinary reduction cases than in the ordinary
one. See Section 1.5 for more details.

1.3. Strategy.

1.3.1. Cohomological interpretation. The starting point of the proof of Theorem 1.2.1
is a cohomological interpretation of Brauer classes with non-constant evaluation map,
which can be deduced by pushing the techniques in [BN23]. Consider the following
subgroup of Br(XK)[p] of “geometrically boring” classes

Br(XK)gb :=
⋃

L/K finite

{
AK | A ∈ Br XL and ∃F/L finite such that evF

A is constant
}
.

The conclusion of Theorem 1.2.1 is equivalent to the statement that Br(XK)gb[p] ,
Br(XK)[p]. Writing K(X)sh for the strict henselisation of the function field of XK , with
respect to the p-adic valuation, one proves the following:

Theorem 1.3.1. Assume that X has good reduction. Then there is a natural isomorphism

Br(XK)[p]/Br(XK)gb[p] = Im(H2(XK ,Z/p)→ H2(K(X)sh,Z/p)).

1.3.2. Prismatic interpretation. With Theorem 1.3.1 in hand, we can apply the machin-

ery of prismatic cohomology. Let OC♭p be the tilt of the ring of integers OCp of Cp := Q̂p,
which is (non-canonically) isomorphic to the completion of the algebraic closure of the
power series ring in one variable over k. Our arguments will concern H∗(XOCp

,∆/p), the
reduction modulo p of the prismatic cohomology theory defined in [BS22]. Under as-
sumption r, it is a finite free OC♭p-module (Proposition 3.2.2), endowed with a Frobenius
φ : H∗(XOCp

,∆/p) → H∗(XOCp
,∆/p). Let d ∈ OC♭p be the element defined in (3.1.1).

Building on the work in [BMS18; BMS19; BS22] and, in particular, using the syntomic
interpretation of p-adic vanishing cycles given in [BMS19, Section 10], we prove the
following:

Theorem 1.3.2. Let X be a smooth proper model of X with special fibre Y. Assume that
r holds. Then one has

Ker(Hn(XK ,Z/p)→ Hn(K(X)h,Z/p)) ≃ Ker(φ−dn−1 : Hn(XOCp
,∆/p)→ Hn(XOCp

,∆/p))

Thanks to the étale comparison theorem for prismatic cohomology and to Theorems
1.3.1 and 1.3.2, Theorem 1.2.1 is implied by the following:
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Theorem 1.3.3. Let X be a smooth proper model of X with special fibre Y. Assume that
r holds. If Hi(X,Ω2n−i) , 0 for some i , n , then

dimFp(Ker(φ − dn : H2n(XOCp
,∆/p)→ H2n(XOCp

,∆/p))) < rankO
C♭p

(H2n(XOCp
,∆/p)).

Remark 1.3.4. Although Theorems 1.3.2 and 1.3.3 are true for an arbitrary value of n,
the only cohomology group for which they can be used together is H2(XOCp

,∆/p). See
also Remark 1.4.2.

1.4. Strategy for the proof of Theorem 1.3.3. To simplify the discussion, we assume in
this subsection that n = 1. One can show that if H0(X,Ω2) , 0 then φ : H2(XOCp

,∆/p)→

H2(XOCp
,∆/p) is not zero when tensored with k. However, this information is not enough

to control the dimension of Ker(φ − d), as Example 5.1.2 shows. Hence, a more refined
control on the action of the Frobenius is needed and we achieve this via a Newton-above-
Hodge type of argument.

Choose a compatible system {da}a∈Q of roots of d in OC♭p . For every positive rational
number a ∈ Q, we let O(−a) be the free OC♭p-module of rank 1, with generator e, on which
there is a semi-linear Frobenius acting as φ(e) = dae. First, we show in Proposition
4.1.3 that H2(XOCp

,∆/p) admits a Frobenius-equivariant decreasing filtration F j such
that F j/F j+1 ≃ O(−a j) for some a j ∈ Q. While these a j might depend on the choice of
the filtration (see Example 4.1.7), we show in Proposition 4.1.3(2) that their sum does
not. Hence, we define the total slope TS(H2(XOCp

,∆/p)) of H2(XOCp
,∆/p) to be this

sum. Some (semi-)linear algebra over OC♭p (Lemma 5.1.1) reduces the proof of Theorem
1.3.3 to showing the equality

TS(H2(XOCp
,∆/p)) = rank(H2(XOCp

,∆/p)).

The following theorem, whose proof is inspired by [Yao23], proves a more general re-
sult, which should be thought of as a “Newton-above-Hodge” statement and may be of
independent interest.

Theorem 1.4.1. Let X be a smooth proper model of X with special fibre Y. Assume that
r holds. Then

TS(Hn(XOCp
,∆/p)) =

n∑
i=0

i · hi,n−i.

Remark 1.4.2. This is a continuation of Remark 1.3.4. If one wants to study Ker(φ −
dn−1 : Hn(XOCp

,∆/p) → Hn(XOCp
,∆/p)) for an arbitrary value of n and prove that it

has small dimension, Theorem 1.4.1 is not enough, since the sum of Hodge numbers
appearing there is too small to use the arguments in Lemma 5.1.1. It seems likely that to
get that the dimension of Ker(φ − dn−1 : Hn(XOCp

,∆/p) → Hn(XOCp
,∆/p)) is small for

bigger n, one needs extra conditions on p, as shown in Example 5.2.1. This seems to be
compatible with the results in [FKW24].

1.5. Special cases. We make Theorem 1.2.1 more explicit in certain families of abelian
varieties and their associated Kummer varieties. For abelian varieties, one can use pris-
matic Dieudonné theory, from [AL23], to make prismatic cohomology more concrete.

1.5.1. Products of elliptic curves. By combining Theorems 1.3.1 and 1.3.2 with pris-
matic Dieudonné theory, we prove the following:



WILD BRAUER CLASSES VIA PRISMATIC COHOMOLOGY 5

Proposition 1.5.1. Let X = Z×W for elliptic curves Z,W with good reduction and Néron
models Z,W. Then there exists a natural isomorphism

Br(XK)[p]/Br(XK)gb[p] ≃ HomCp(Z[p],W[p])/HomOCp
(Z[p],W[p]).

Remark 1.5.2. Proposition 1.5.1 is a special case of a more general result on products
of varieties X = Z ×W, which states that, under assumption r, one has an injection

HomCp(Pic0(Z)[p],Alb(W)[p])

HomOCp
(Pic0(Z)[p],Alb(W)[p])

⊆
Br(XK)[p]

Br(XK)gb[p]
,

where Alb(W) is the Albanese variety and Alb(W) is its Néron model. The proof of
this is a bit more subtle, since it requires the study of the behaviour of the reduction of
the Albanese variety, which in turn requires an explanation of how to use the results in
[LL23]. For the sake of simplicity, we restrict ourselves to the case of elliptic curves,
where the proof is easier.

Abusing notation, we write HomK(Z,W) for its image in HomK(Z[p],W[p]). Recall-
ing that Br(XK)[p] ≃ HomK(Z[p],W[p])/HomK(Z,W), Proposition 1.5.1 shows that an
element in Br(XK)[p] lies in Br(XK)gb[p] if and only if the corresponding element in
HomK(Z[p],W[p]) lifts to the integral model over OCp . Since X has trivial canonical
bundle, combining this with Proposition 2.2.3, we get that a Brauer class in Br(X)[p]
associated to a homomorphism σ : Z[p] → W[p] defined over K has non-constant eval-
uation map (over K) as soon as σ does not lift to the integral models over OCp .

This gives a criterion for having non-constant evaluation map that can be applied to
concrete Brauer classes. For example, when Z = W is a CM elliptic curve, we study the
Brauer class associated to the action of complex conjugation and show how to reinterpret
and generalise examples constructed in [New16; IS15; AN25]. In this setting, we show
in Corollary 6.2.6 that in most cases of supersingular reduction one has Br(XK)gb[p] = 0,
which cannot happen in the ordinary reduction case (cf. Corollary 6.2.3).

1.5.2. Abelian varieties of positive p-rank and associated Kummer varieties. Now sup-
pose that X is an abelian variety. Since H2(XOCp

,∆/p) ≃ Λ2H1(XOCp
,∆/p), prismatic

Dieudonné theory can be used once again to get more explicit results. We prove a lower
bound for the quotient Br(XK)[p]/Br(XK)gb[p]. Moreover, we show that this bound can
be transferred to the Kummer variety associated to an X[2]-torsor T over k.

Theorem 1.5.3. Let X be an abelian variety of dimension g ≥ 2 with good reduction and
assume that the special fibre has p-rank e > 0. Then

dimFp(Br(XK)[p]/Br(XK)gb[p]) ≥ 2g − 1 − e.

Furthermore, if p is odd, then for any X[2]-torsor T over k,

dimFp(Br(Kum(XT )K)[p]/Br(Kum(XT )K)gb[p]) ≥ 2g − 1 − e.

where Kum(XT ) is the Kummer variety associated to T .

The bounds given in Theorem 1.5.3 are attained when X is a product of two elliptic
curves, see Corollary 6.2.3.

Remark 1.5.4. In Theorem 1.2.1, under assumption r, the hypothesis on the existence
of global differential 2-forms is necessary. Indeed, if H0(Y,Ω2) = 0, then one has
Br(XK)[p] = Br(XK)gb[p], as follows by combining Corollary 2.3.1 with [BK86, The-
orem 8.1 and (8.0.1)]. On the other hand, we do not know whether the assumption r is
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really necessary. The first interesting test case is a non-classical Enriques surface over a
finite extension of Q2 with good reduction, for which, to the best of our knowledge, not
many results exist in the literature. In this situation, torsion in étale cohomology has to
be treated with different techniques. We hope to return to this problem in the near future.

1.6. Organisation of the paper. In Section 2 we study the relationship between Brauer
classes with non-constant evaluation, henselisation and the p-adic vanishing cycles. In
Section 3, after recalling some preliminaries on prismatic cohomology, we relate p-adic
vanishing cycles (hence Brauer classes with non-constant evaluation) with prismatic co-
homology. In Section 4, we prove a Newton-versus-Hodge type of theorem for modulo
p prismatic cohomology. In Section 5 we put everything together to prove the main The-
orem 1.2.1. Finally, in Section 6 we use the previous techniques to study the case of
products of elliptic curves and abelian varieties, where the results are more explicit.

1.7. Acknowledgements. This research was partly supported by the grant ANR–23–CE40–0011
of Agence Nationale de la Recherche. Rachel Newton was supported by UKRI Future
Leaders Fellowship MR/T041609/1 and MR/T041609/2. Part of this work was done dur-
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Arthur-César Le Bras and Matthew Morrow for useful email exchanges.

1.8. Conventions. If L is a valuation field, we write OL for the valuation ring and mL ⊆

OL for the maximal ideal and kL for the residue field. If OL is a discrete valuation ring,
we write πL for an uniformiser and we omit the subscript L if it is clear from the context.
If K is a p-adic field, we write Cp for the completion of an algebraic closure of K.

If R→ S is a morphism of rings and X is a scheme over R, we write XS := X ×R S . If
X is a scheme and A a ring, we write Sh(X, A) for the category of étale sheaf on X with
coefficient in A and Db(X, A) for its bounded derived category. We omit A if A = Z. If F•

is in Db(X, A) and n ∈ Z, we write τ≤nF
• and τ>nF

• for the canonical truncation, so that
there is an exact triangle

τ≤nF
• → F• → τ>nF

•.

We let Hi(F•) be the ith cohomology sheaf of F• and Hi(X,F•) be the hypercohomology
of F•. We omit X if it is clear from the context. We write F•/p := F• ⊗L Z/p for the
derived tensor product with Z/p. This gives an exact functor

(−) ⊗L Z/p : Db(X, A)→ Db(X, A/p).

Most of the time, when talking about global differential forms on varieties, we will sup-
press from the notation the subscript keeping track of the variety itself. This will not be
the case in Section 3, where we work with differential forms and de Rham complex on
schemes over a given base ring.

2. Brauer classes with non-constant valuation map

In this section, we prove Theorem 1.3.1 and its Corollary 2.3.1 that gives a cohomo-
logical interpretation of geometrically boring Brauer classes. In order to do this, we start
in Section 2.1 by recalling some results and notation from [BN23] about refined Swan
conductors. In Section 2.2, we use this theory to prove Theorem 1.3.1, from which we
deduce Corollary 2.3.1.
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2.1. Filtration on the Brauer group and refined swan conductor. Let K be a finite
extension of Qp with residue field k. Fix a uniformiser π of OK . Let X/OK be a smooth
proper scheme with special fibre Y/k and generic fibre X/K. Let K(X) be function field
of X and let K(X)h its henselisation with respect to the p-adic place and K(X)sh its strict
henselisation. Let gK : Br(X)[p]→ Br(K(X)sh)[p] be the restriction map.

From [BN23], we learn that by pulling back Kato’s [Kat89] Swan conductor filtration
defined on H2(K(X)h,Z/p(1)) ≃ Br(K(X)h)[p] to Br(X)[p], we get a finite exhaustive
increasing filtration

0 ⊆ fil0(X) ⊆ . . . fili(X) = Br(X)[p].

This filtration is such that

(2.1.1) fil0(X) = Ker(Br(X)[p]→ Br(K(X)sh)[p])

and there are maps, realised as pullbacks of the analogous maps defined by Kato [Kat89]
at the level of the henselian field K(X)h,

∂ : fil0(X)→ H1(Y,Z/p) and rswi,π : fili(X)→ H0(Y,Ω1) ⊕ H0(Y,Ω2), for i ≥ 1,

such that fili = ker(rswi+1,π). In [BN23] Bright and Newton show that these maps control
arithmetic properties of the elements in the Brauer group. In particular, they satisfy the
following properties.

Theorem 2.1.2. [BN23, Corollary 3.7 and Theorem B]

(1) The kernel of the residue map ∂ coincides with Br(X)[p];
(2) Let n ≥ 1 and A ∈ filn(X) with rswn,π(A) = (α, β) ∈ H0(Y,Ω2) ⊕ H0(Y,Ω1). If

there exists P0 ∈ Y(k) such that (αP0 , βP0) , 0, then evA : X(K) → Br(K)[p] is
surjective.

In order to prove Theorem 1.3.1, we need to give more details on the construction
of the residue map ∂ and the refined Swan conductor maps rswn,π at the level of the
henselian field K(X)h.

2.1.1. The maps λπ and δ. Let Mh be a henselian discrete valuation field containing Qp,
with ring of integers OMh and residue field F of characteristic p > 0. Fix a uniformiser π
and, to simplify the discussion, assume that π is algebraic over Qp.

Following [Kat89], we write

Z/p(q) := Ωq
log[−q] in Db(F) and Z/p(q) := Z/p(1)⊗q in Db(Mh)

for the (q-shifted) sheaf of q-logarithmic differential forms and the q-Tate twist of the
constant sheaf, respectively.

In [Kat89, p. 1.4] Kato builds lifting maps from the cohomology groups Hq(F,Z/p(q−
1)) to their characteristic zero counterparts, Hq(Mh,Z/p(q − 1)), denoted as

ιq : Hq(F,Z/p(q − 1))→ Hq(Mh,Z/p(q − 1)).

Using the Kummer map (Mh)× → H1(Mh,Z/p(1)) and the cup product, we define a
product

Hq(Mh,Z/p(q − 1)) × (Mh)× → Hq+1(Mh,Z/p(q))
(χ, a) 7→ {χ, a}.
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By [Kat89, p. 1.4], the map

λπ : Hq(F,Z/p(q − 1)) ⊕ Hq−1(F,Z/p(q − 2))→ Hq(Mh,Z/p(q − 1))

(χ, ψ) 7→ ιq(χ) + {ιq−1(ψ), π}

is injective. Moreover, by [Kat89, p. 1.3], there is a surjective map

δ : Ωq−1
F → Hq(F,Z/p(q − 1)),

which allows one to represent elements in Hq(F,Z/p(q − 1)) using differential forms.
By [BN23, Lemma 2.13], if ϕ : Mh → M̃h is a finite homomorphism of henselian

fields over Qp with ramification index e and M̃h has a uniformiser π̃ which is algebraic
over Qp, one has

(2.1.3) ϕ∗λπ(δ(α), δ(β)) = λπ̃(δ(ϕ∗α), eδ(ϕ∗β)), in Hq(M̃h,Z/p(q − 1)).

for every α, β ∈ Ωq−1
F ⊕Ω

q−2
F .

2.1.2. Definition of fil0 and ∂. We now go back to our setting, in which Mh is K(X)h

and the residue field F is k(Y), the function field of the special fibre Y . The subgroup
fil0(K(X)h) ⊆ Br(K(X)h)[p] ≃ H2(K(X)h,Z/p(1)) is then defined1 as

fil0(K(X)h,Z/p(1)) := Im
(
λπ : H2(k(Y),Z/p(1)) ⊕ H1(k(Y),Z/p)→ H2(K(X)h,Z/p(1))

)
.

Since λπ is injective, we can then define the residue map

∂ := p2 ◦ λ
−1
π : fil0 H2(K(X)h)→ H1(k(Y),Z/p)

which is the projection onto H1(k(Y),Z/p) of the inverse of λπ. Its restriction to fil0(X) ⊆
Br(X)[p] induces (see [BN23, Proposition 3.1]) the required map

∂ : fil0(X)→ H1(Y,Z/p).

2.1.3. Definition of filn and rswn,π. Let L be the field of fraction of Oh
X,Y [T ](π). Again,

using the Kummer map L× → H1(L,Z/p(1)), the cup product and the natural map
H2(K(X)h,Z/p(1))→ H2(L,Z/p(1)), we define a product

H2(K(X)h,Z/p(1)) × L× → H3(L,Z/p(2))
(χ, a) 7→ {χ, a}.

The subgroup filn(K(X)h) ⊆ Br(K(X)h)[p] ≃ H2(K(X)h,Z/p(1)) is then defined as

filn(K(X)h) :=
{
χ ∈ H2(K(X)h,Z/p(1)) such that {χ, 1 + πn+1T } = 0 in H3(L,Z/p(2))

}
.

By [Kat89, Section 5] together with [Kat89, Proposition 6.3], for every n ≥ 1 and χ ∈
filn(K(X)h), there exists a unique pair (α, β) in Ω2

k(Y) ⊕Ω
1
k(Y) such that

(2.1.4) {χ, 1 + πnT } = λπ(δ(Tα), δ(Tβ)), in H3(L,Z/p(2)).

The pair (α, β) is called the refined Swan conductor of χ ∈ filn(K(X)h) ⊆ H2(K(X)h,Z/p(1)).
Hence, for every n ≥ 1, we get an homomorphism

rswn,π : filn(K(X)h)→ Ω2
k(Y) ⊕Ω

1
k(Y),

1Kato’s original definition of fil0 is different; however, he proves in [Kat89, Proposition 6.1] that the
definition we gave here is equivalent to his. Finally, he also proves that fil0 can be realised as the kernel of
the natural map H2(K(X)h,Z/p(1))→ H2(K(X)sh,Z/p(1)), which gives back the description of fil0 provided
in equation (2.1.1).
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whose restriction to filn(X) ⊆ Br(X)[p], induces (see [BN23, Theorem 8.1.(1)]) the re-
quired map

rswn,π : filn(X)→ H0(Y,Ω2) ⊕ H0(Y,Ω1).

2.2. Proof of Theorem 1.3.1. Choosing an isomorphism between Z/p and Z/p(1) over
K, we may and do replace Z/p with Z/p(1) in the statement of Theorem 1.3.1. Since
elements of NS(XK) are already zero when restricted to K(X), the restriction map

H2(XK ,Z/p(1))→ H2(K(X)sh,Z/p(1))

factors through a map

g : Br(XK)[p]→ H2(K(X)sh,Z/p(1)).

We are going to prove that Ker(g) = Br(XK)gb[p] by double inclusion.

2.2.1. ⊆. First we prove the inclusion Ker(g) ⊆ Br(XK)gb[p]. Let Ã ∈ Ker(g) and let
L be a finite extension of K such that there exists A ∈ Br(XL)[p] with AK = Ã. Since
Ã ∈ Ker(g), upon replacing L with a finite extension, we can assume that A is in the
kernel of gL : Br(XL)[p] → Br(L(X)sh)[p], i.e. in fil0(XL), cf. (2.1.1). By the following
Proposition 2.2.1, upon replacing L with a finite field extension, we can assume that
∂(A) = 0. By 2.1.2(1), this implies that A ∈ Br(XL)[p] ⊆ Br(XL)[p]. But then, since
X(OL) = X(L), the evaluation map factors through Br(OL) = 0 and hence it is constantly
zero.

Proposition 2.2.1. Let A ∈ Br(X). There exists a finite extension K′/K such that AK′ ∈

fil0 Br(XK′) if and only if the image of A in Br(K(X)h) can be written as a sum B + C

where B ∈ fil0 Br(K(X)h) has residue zero and C ∈ Br(K(X)h) is such that CK(X)hL = 0
for some finite extension L/K.

Proof. The if implication follows from the fact that fil0(K(X)h) maps to fil0(L) for every
finite extension K(X)h ⊆ L, thanks to [BN23, Lemma 2.16].

For the forwards implication, suppose K′/K is a finite extension with ramification
index ε and uniformiser π′ such that AK′ ∈ fil0(XK′). Let k(Y)′ be the residue field of
K(X)hK′. By definition of fil0 (see Section 2.1.2), there exist (χ, ψ) ∈ H2(k(Y)′,Z/p(1))⊕
H1(k(Y)′,Z/p) such that

AK(X)hK′ = λπ′(χ, ψ).

Let σ ∈ Γk be such that its image σ̄ ∈ Gal(k(Y)′/k(Y)) generates Gal(k(Y)′/k(Y)). Since
Aσ = A and λπ′ is injective, we have χσ = χ ∈ Br(k(Y)′) (and ψσ = ψ). Thus by the
following Lemma 2.2.2, there exists a χ0 ∈ Br(k(Y)) such that resk(Y)′/k(Y)χ0 = χ. Let
B = λπ(χ0, 0) ∈ fil0(K(X)h). Note that B has residue zero by definition (see Section
2.1.2), hence B has zero residue on every finite extension. it remains to prove that C :=
AK(X)h −B vanishes after a finite extension. Applying (2.1.3), with ϕ : K(X)h ⊆ K(X)hK′

being the natural inclusion, shows that BK(X)hK′ = λπ′(χ, 0) so that

CK(X)hK′ = λπ′(χ, ψ) − λπ′(χ, 0) = λπ′(0, ψ) = {ι1(ψ), π′}

which is split by adjoining a pth root of π′. □

Lemma 2.2.2. Let L/F be a Galois extension of fields such that G := Gal(L/F) is cyclic.
Then the natural map Br(F)→ (Br(L))G is surjective.
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Proof. By looking at the Hochschild–Serre spectral sequence

Ea,b
2 := Ha(G,Hb(L,Gm)) =⇒ Ha+b(F,Gm),

it is enough to show that E0,2
2 = E0,2

∞ . For this, we prove that E2,1
2 = E3,0

2 = 0. Since
Pic(L) = 0, one has E2,1

2 = H2(G,Pic(L)) = 0. On the other hand, since G is cyclic and
using Hilbert’s Theorem 90, one has E3,0

2 = H3(G, L∗) = H1(G, L×) = 0. □

2.2.2. ⊇. Now we prove the inclusion Br(XK)gb[p] ⊆ Ker(g). Let Ã ∈ Br(XK)[p]\Ker(g)
and let L be a finite extension of K such that there exists A ∈ Br(XL)[p] with AK = Ã.
Since Ã < Ker(g), upon replacing L with a finite extension, we can assume that for every
extension L ⊆ F one has gF(A) , 0 where gF : Br(XF)[p] → Br(F(X)sh)[p] is the
natural map, i.e. A < fil0(XF). By the following Proposition 2.2.3, upon replacing again
L with a finite field extension, we get that Ã < Br(XK)gb[p].

Proposition 2.2.3. Let A ∈ Br(X)[p] and assume that A < fil0(XF) for all finite ex-
tensions F of K. Let k′/k be a finite extension such that for every non-zero (α, β) ∈
H0(Y,Ω2) ⊕ H0(Y,Ω1) there exists P ∈ Y(k′) such that (αP, βP) , 0 and K′/K the cor-
responding unramified extension. Then, for every extension L/K′ the evaluation map
evL

A
: X(L)→ Br(L)[p] is surjective.

Proof. By Theorem 2.1.2(2) it is enough to show that for every L/K′ there exists n ≥ 1
such that B ∈ filn(XL) with rswn,πL(B) = (α, β) ∈ H0(YkL ,Ω

2) ⊕ H0(YkL ,Ω
1) and such

that there exists P ∈ YkL(kL) with (αP, βP) , (0, 0). By assumption, we know that AL <
fil0(XL), hence there exists n ≥ 1 such that AL ∈ filn(XL)\filn−1(XL) so that rswn,πL(AL) ,
(0, 0). By Lemma 2.2.4 below, we have

rswn,πL(AL) = c̄n(α0, β0)

with c̄ a unit in the residue field kL of OL and (α0, β0) ∈ H0(Y,Ω2) ⊕ H0(Y,Ω1). By
assumption, there exists P ∈ Y(k′) ⊆ Y(kL) such that (c̄nα0,P, c̄nβ0,P) , (0, 0) and hence
evL

A
is non-constant on L-points. This concludes the proof. □

Lemma 2.2.4. Let L/K be a finite field extension with ring of integers OL and residue
field kL. Fix a uniformiser πL of OL.

(1) Let AL ∈ filn(XL) for n ≥ 1. Write rswn,πL(AL) = (α, β). Then for σ ∈ Gal(L/K),

rswn,πL(σ∗(AL)) = ā−n · (σ∗(α), σ∗(β))

with ā the image in kL of a := σ(πL)/πL.
(2) Let A ∈ Br(X)[p] be such that AL ∈ filn(XL) for n ≥ 1. Then

rswn,πL(AL) = c̄n(α0, β0)

with c̄ ∈ k×L and (α0, β0) ∈ H0(Y,Ω2) ⊕ H0(Y,Ω1).

Proof.
(1) Let RL denote the henselisation of the local ring OXOL ,YkL

. An element σ ∈
Gal(L/K) induces a ring morphism σ : RL[T ]→ RL[T ]. By definition of rswn,πL ,
it is enough to show that

λπL(δ(ā−nTσ∗(α)), δ(ā−nTσ∗(β))) = {σ∗AL, 1 + πn
LT }.
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Let ϕ̃ : (RL[T ])h
(πL) → (RL[T ])h

(πL) be the map sending T to a−nT and write ϕ :=
ϕ̃ ◦ σ, so that

(ā−nTσ∗(α), ā−nTσ∗(β)) = (ϕ∗(αT ), ϕ∗(βT )).

Applying (2.1.3) with ϕ : (RL[T ])h
(πL) → (RL[T ])h

(πL),

λπL(δ(ā−nTσ∗(α)), δ(ā−nTσ∗(β))) = ϕ∗(λπL(δ(αT ), δ(βT )))

= ϕ∗({AL, 1 + πn
LT }),

where the first equality comes from the fact that the ramification index of ϕ is
1, while the second is the definition of refined Swan conductor. The proof is
concluded by observing that

ϕ∗({AL, 1 + πn
LT }) = {σ∗(AL), 1 + σ(πL)na−nT } = {σ∗(AL), 1 + πn

LT }.

(2) Let (α, β) := rswn,πL(AL) and let e be the ramification index of L/K. Write
c :=

(
πe

πL

)n
and define

α0 := cα and β0 := cβ,

so that it is enough to show that α0 and β0 are Galois invariant. The element AL
is Galois invariant by construction, hence for any σ ∈ Gal(L/K)

(α, β) = rswn,πL(AL) = rswn,πL(σ∗(AL)) = ā−n(σ∗(α), σ∗(β)),

where the last equality follows from part (1). Hence, ā−nσ∗(α) = α so that,

σ∗(α0) =
(
σ(π)e

σ(πL)

)n

σ∗(α) =
((π)e)n

σ(πL)n
σ(πL)n

πn
L

α =

(
πe

πL

)n

α = α0,

whereby α0 is Galois invariant. The same argument applies to β0 and concludes
the proof. □

2.3. p-adic vanishing cycles. To be able to reinterpret Theorem 1.3.1 in terms of pris-
matic cohomology, we need to reinterpret Theorem 1.3.1 in terms of the p-adic vanishing
cycles spectral sequence, following [BN23, Proof of Theorem C]. Let j : X → X be the
natural open immersion. Recall that there is a spectral sequence

Ea,b
2 := Ha(XOK

,Rb j∗Z/p)⇒ Ha+b(XK ,Z/p).

We consider the the edge map

Hn(XK ,Z/p)→ H0(XOK
,Rn j∗Z/p)

and its variant over OCp

Hn(XCp ,Z/p)→ H0(XOCp
,Rn j∗Z/p).

Corollary 2.3.1. One has an equality

Ker(Hn(XK ,Z/p)→ Hn(K(X)sh,Z/p)) = Ker(Hn(XCp ,Z/p)→ H0(XOCp
,Rn j∗Z/p)),

and an isomorphism

Br(XK)[p]/Br(XK)gb[p] = Im(H2(XCp ,Z/p)→ H0(XOCp
,R2 j∗Z/p)).
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Proof. The second part follows from the first part and Theorem 1.3.1. For the first part,
write K(X)h for the henselisation of K(X), so that K(X)sh is the maximal unramified ex-
tension of K(X)h. Let Γ := Gal(K(X)sh/K(X)h). Consider the Hochschild–Serre spectral
sequence for K(X)h ⊆ K(X)sh,

Ea,b
2 := Ha(Γ,Hb(K(X)sh,Z/p))⇒ Ha+b(K(X)h,Z/p).

The edge maps

Hn(XK ,Z/p)→ H0(XOK
,Rn j∗Z/p) and Hn(K(X)h,Z/p)→ H0(Γ,Hn(K(X)sh,Z/p)))

fit into a commutative diagram

Hn(XK ,Z/p) Hn(K(X)h,Z/p)

H0(XOK
,Rn j∗Z/p) H0(Γ,Hn(K(X)sh,Z/p))) Hn(K(X)sh,Z/p)),

g

in which the horizontal arrows in the square are the natural restriction maps and bottom
right map is the natural inclusion. By [BN23, Lemma 3.4], the map g is injective, hence

Ker(Hn(XK ,Z/p)→ Hn(K(X)sh,Z/p)) = Ker(Hn(XK ,Z/p)→ H0(XOK
,Rn j∗Z/p)).

Since étale cohomology is invariant under algebraically closed field extensions, one has

Ker(Hn(XK ,Z/p)→ H0(XOK
,Rn j∗Z/p)) ≃ Ker(Hn(XCp ,Z/p)→ H0(XOCp

,Rn j∗Z/p)),

and this concludes the proof. □

3. Prismatic cohomology and p-adic vanishing cycles

In this section we prove Theorem 1.3.2. We start with Section 3.1, in which we recall
results and definitions on OC♭p , Ainf and prismatic cohomology from [BS22]. With these
in our hands, in Section 3.2 we perform some computations in the mod-p version of
prismatic cohomology, that we will use in the rest of the paper. Finally, in Section 3.3 we
prove Theorem 1.3.2.

In this section k denotes the residue field of OCp . Let X be a smooth proper scheme
over OCp and X̂ its formal p-adic completion. We write Y for Xk and X for XCp . Let

ha,b := dimCp(Hb(X,Ωa
X/Cp

)) and hn := dimCp(Hn
dR(X/Cp)) = dimQp(Hn

ét(X,Qp)).

3.1. Recollection on prismatic cohomology.

3.1.1. Tilt. A reference for what follows is [Bha17, Sections 2 and 3]. Let OC♭p be the tilt
of OCp . Recall that

OC♭p ≃ lim
←−−

φOCp /p

OCp/p ≃ lim
←−−

x 7→xp

OCp ,

where the first isomorphism is as rings and the second as multiplicative monoids, and the
first limit is done along the power of the absolute Frobenius φOCp/p : OCp/p → OCp/p
and the second along the pth-power map (−)p : OCp → OCp .

The choice of a compatible system {ζpn} of primitive p-power roots of unity in OCp

gives, via the isomorphism OC♭p ≃ lim
←−−x 7→xp

OCp , an element

ϵ := (1, ζp, . . . , ζpn , . . . ) ∈ OC♭p .
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The p-adic valuation of OCp induces, precomposing with the projection on the first com-
ponent, a rank 1 valuation v on OC♭p , such that the element

(3.1.1) d :=
p−1∑
i=0

ϵi/p,

has v(d) = 1. Then v makes OC♭p a complete valuation ring, whose maximal ideal m♭ is
generated by dα for α ∈ Q>0.

3.1.2. Ainf . A reference for what follows is [BMS18, Section 3, Example 3.16]. Set
Ainf := W(OC♭p) and write φ : Ainf → Ainf for the Frobenius automorphism. If x ∈ OC♭p ,
we denote by [x] its Teichmuller lift. Recall that there is a natural map θ : Ainf → OCp ,
whose kernel is principal generated by

ξ :=
p−1∑
i=0

[ϵi/p]

whose reduction modulo p is d.
Since Ker(θ) = (ξ) is principal, for every n ≥ 1, sending 1 to ξn and dn induces natural

isomorphisms

Ainf → Ainf ⊗ (ξn) and OC♭p → OC♭p ⊗ (dn)

respectively. If M is an Ainf-module (resp. OC♭p-module), we will identify M ⊗ (ξn)
(resp. M ⊗ (dn)) with M along this isomorphism, and if f : N → M ⊗ (ξn) (resp.
f : N → M ⊗ (dn)) is a morphisms of Ainf-module (resp. OC♭p-module), we will write
fn : N → M for the induced morphism.

We will work mainly with the following commutative diagram

OCp

Ainf Ainf

W(k) W(k),

β

θ̃

φ

β

θ

φ

where β is induced by the projection OC♭p → k via the Witt vectors functoriality and

θ̃ := θ ◦ φ−1, and its modulo p version

OCp/p ≃ OC♭p/d

OC♭p OC♭p

k k.

β

θ̃

φ

β

θ

φ
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3.1.3. Some sheaves on the prismatic sites. A reference for what follows is [BS22, Sec-
tion 4]. Consider the prism ∆ := (Ainf , (ξ)). Let Sh∆(X) be the category of sheaves in
the prismatic site of X̂ (with the flat topology, see [BS22, Section 4.1]). There are two
interesting sheaves of Ainf-modules:

(1) OX/∆, which sends (B, J) to B
(2) OX/∆, which sends (B, J) to B/J.

Let Shét(X̂) be the category of sheaves in the étale site of X̂. There is a natural functor
(see [BS22, Construction 4.4])

v∗ : Shét(X̂)→ Sh∆(X).

Let
∆ := Rv∗OX/∆ and ∆ := Rv∗OX/∆.

These are complexes of sheaves of Ainf and OCp-modules, respectively, such that

∆ ⊗L OCp ≃ ∆

and ∆ is endowed with a natural φAinf -linear Frobenius φ : ∆→ ∆.
Set

∆(1) := φ∗Ainf
∆,

so that the φAinf -linear Frobenius φ : ∆ → ∆, induces an Ainf-linear map ϕ : ∆(1) → ∆

and φAinf -linear map φ(1) : ∆(1) → ∆(1), fitting into a commutative diagram

∆ ∆

∆(1) ∆(1)

φ

s s
ϕ

φ(1)

where s is the natural inclusion.
By [BS22, Theorems 15.2 and 15.3] (see also [TZ23, Construction 5.26] for a global

statement in a more general situation) there exists a decreasing filtration, called the Ny-
gaard filtration,

ι : N≥i → ∆(1)

and a Ainf-linear map ϕi : N≥i → ∆, called the ith-divided Frobenius, making the follow-
ing diagram commutative

N≥i ∆ ∆.
ϕi

ϕ◦ι

ξi

We write φ(1)
i : N≥i → ∆(1) for the φAinf -linear compositum s ◦ ϕi.

3.1.4. Comparison isomorphisms. The following summarises the main results we need
from [BS22].

Theorem 3.1.2. There are exact triangles in Db(X̂,OC♭p)

(3.1.3) τ≤i−1(∆/p)→ τ≤i(∆/p)→ Ωi
X/p/(OCp/p)

(3.1.4) N≥i+1/p→ N≥i/p
ϕi
−→ τ≤i(∆/p)
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and an isomorphism

(3.1.5) φ∗∆/p ≃ Ω•X/p/OCp/p

Proof. Since X is smooth, Ω j
X/OCp

is locally free. Hence (3.1.3) follows applying − ⊗L

Z/p to the Hodge-Tate comparison from [BS22, Theorem 4.11] thanks to the subsequent
Lemma 3.1.6(1). Similarly, (3.1.4) follows from [BS22, Theorem 15.3] (see also [TZ23,
Corollary 5.27] for a global statement) after applying − ⊗L Z/p thanks to the subsequent
Lemma 3.1.6(1). Finally, (3.1.5) follows from the de Rham comparison [BS22, Theorem
6.4] after applying − ⊗L Z/p □

Lemma 3.1.6. Let R be a ring F• ∈ Db(X̂,R). Assume that Hn(F•) is finite locally free
over R for every n. Then:

(1) For every ring morphism R→ S , there is a natural isomorphism (τ≤iF
•) ⊗L S ≃

τ≤i(F• ⊗L S ).
(2) Assume that R is coherent complete local ring with residue field k and that

Hi(Hn(F•)) and Hi(F•) are finite free for every i and n. If the conjugate spectral
sequence

kEa,b
2 := Ha(Hb(F• ⊗L k))⇒ Ha+b(F• ⊗L k)

for F•⊗L k degenerates at the second page, then the conjugate spectral sequence

Ea,b
2 := Ha(Hb(F•))⇒ Ha+b(F•)

for F• degenerates at the second page.

Proof.
(1) Assume that F• is concentrated in degree ≤ r. We prove the statement by de-

creasing induction on i, the case i = r + 1 being clear since both sides identify
with F• ⊗L S . Assume now i < r + 1 and consider the exact triangle

τ≤iF• → τ≤i+1F• → Hi(F•),

giving an exact triangle

(τ≤iF•) ⊗L S → (τ≤i+1F•) ⊗L S → (Hi(F•)) ⊗L S .

By induction (τ≤i+1F•)⊗L S ≃ τ≤i+1(F•⊗L S ). Since (τ≤iF•)⊗L S is concentrated
in degree ≤ i, we get a natural commutative diagram with exact rows

(τ≤iF•) ⊗L S (τ≤i+1F•) ⊗L S (Hi(F•)) ⊗L S

τ≤i(F• ⊗L S ) τ≤i+1(F• ⊗L S ) Hi(F• ⊗L S )

Since Hi(F•) is flat, the right vertical map in an isomorphism. By induction as-
sumption the middle vertical map is an isomorphism. This implies the statement.

(2) We start observing that by assumption and point (1) the natural map

(3.1.7) Ep,q
2 ⊗ k = Ha(Hb(F•)) ⊗ k ≃ Ha(Hb(F• ⊗L k)) = kEp,q

2

is an isomorphism. Let Fi
n be ith piece of the filtration on Hn(F•) induced by the

spectral sequence. We prove by induction on i ≥ 0 that, for every n, Ei,n
2 = Ei,n

∞

and Fi+1 is locally free .
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If i = 0, the equality E0,n
2 = E0,n

∞ follows from the fact that the edge map

Hn(F•)→ H0(Hn(F•))

is surjective, by (3.1.7), Nakayama’s Lemma and the degeneration of the spectral
sequence kEa,b

2 . Then there is an exact sequence

0→ F1
n → Hn(F•)→ E0,n

2 → 0

so that F1
n is finite locally free since E0,n

2 and Hn(F•) are.
Assume now i > 0. By induction hypothesis E j,n

2 = E j,n− j
∞ for j < i and every

n. In particular, all the morphisms with target Ei,n−i
a have to vanish for every a,

so that Ei,n−i
∞ ⊆ E j,n− j

2 and there is a map Fi → E j,n− j
2 . Again by Nakayama’s

Lemma, the degeneration of the spectral sequence kEa,b
2 and (3.1.7), this map is

surjective. Hence E j,n− j
2 = E j,n− j

∞ and there is a short exact sequence

0→ Fi+1
n → Fi

n → Ei,n−i
2 → 0,

so that Fi+1
n is finite and locally free, since Ei,n−i

2 and Fi are. This concludes the
proof.

□

3.2. Cohomological computations. In this section we do the main computations on
prismatic cohomology that we will need in the rest of the paper. Assumption r gives a
way to compute the Hodge groups, which is then used to study prismatic cohomology
and the cohomology of the Nygaard filtration.

3.2.1. Hodge cohomology groups.

Lemma 3.2.1. Assume that r holds. Let R be a OCp-algebra. Then
(1) The natural map

Hi(X,Ω j
X/OCp

) ⊗ R→ Hi(XR,Ω
j
XR/R

)

is an isomorphism and Hi(XR,Ω
j
XR/R

) is a free R-module of rank h j,i.
(2) The Hodge to de-Rham spectral sequence

Ea,b
1 := Hb(XR,Ω

a
XR/R

)⇒ Ha+b
dR (XR/R)

degenerates at the first page.
(3) The natural map

Hn
dR(X/OCp) ⊗ R→ Hn

dR(XR/R)

is an isomorphism and Hn
dR(XR/R) is a free R-module of rank hn.

(4) If R is a complete coherent local ring of characteristic p with residue field k, then
the conjugate spectral sequence

Ea,b
2 := Ha(XR,H

b(Ω•XR/R))⇒ Ha+b
dR (XR/R)

degenerates at the second page and Ha(XR, τ≤nΩ
•
XR/R

) is a locally free R-module
of rank

∑n
i=0 hi,a−i.

Proof.
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(1) Since OCp is reduced, this follows from Grauert’s theorem (see e.g. [Vak25,
25.1.5, p. 731] and [Vak25, Exercice 25.2.C (c), p. 740] for the extension to the
non Noetherian situation), thanks to the assumption r.

(2) By point (1) and the functoriality of the Hodge to de-Rham spectral sequence, it
is enough to show this for R = OCp . In this case, it follows from the commutative
diagram

Hb(X,Ωa
X/OCp

) Hb(X,Ωa+1
X/OCp

)

Hb(X,Ωa
X/Cp

) Hb(X,Ωa+1
X/Cp

),

d

d

since the spectral sequence always degenerates in characteristic 0 and the vertical
maps are injective by point (1).

(3) Since the Hodge-to-de Rham spectral sequence degenerates at the first page by
the previous point, the induced filtration Fi on Hn

dR(X/OCp) satisfies

Fi/Fi+1 ≃ Hn−i(X,Ωi
X/OCp

),

in particular Fi/Fi+1 is locally free. Hence one has a morphism of spectral se-
quences

Hb(X,Ωa
X/OCp

) ⊗ R Ha+b
dR (X/OCp) ⊗ R

Hb(XR,Ω
a
XR/R

) Ha+b
dR (XR/R)

and the conclusion follows from point (1).
(4) By Cartier, FX/R,∗H

i(Ω•
XR/R

) ≃ Ωi
X

(1)
R /R

, where X(1) is the Frobenius twist of X

over R and FX/R : X → X(1) is the relative Frobenius. In particular

Hi(Ω•XR/R) and Hi(XR,H
i(Ω•XR/R))

are R-flat, the second by point (1). Hence, by Lemma 3.1.6, it remains to show
that

Ha(Y,Hb(Ω•Y/k))⇒ Ha+b
dR (Y/k)

degenerates at the second page. This follows again from Cartier’s isomorphism
and point (2), since Y is proper over k.

□

3.2.2. Prismatic cohomology groups.

Proposition 3.2.2. Assume that r holds. Then:
(1) Hn(∆(1)/p) and Hn(∆/p) are free OC♭p-modules of rank equal to hn.
(2) The natural map

Hn(∆(1)/p)) ⊗ k → Hn
dR(Y/k)

is an isomorphism.
(3) The natural maps

Hn(∆(1)/p)/d → Hn(∆
(1)
/p) and Hn(∆/p)/d → Hn(∆/p)
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are isomorphisms. In particular, Hn(∆
(1)
/p) and Hn(∆/p) are free OC♭p/d-modules

of rank equal to hn.
(4) The conjugate spectral sequence for ∆/p

Ea,b
2 := Ha(Hb(∆/p))⇒ Ha+b(∆/p)

degenerates at the second page.

Proof.
(1) Since the Frobenius OC♭p → OC♭p is an isomorphism, by [BS22, Corollary 4.12]

one has that Hn(∆(1)/p) ≃ Hn(∆/p) ⊗φAinf
OC♭p , so that it is enough to prove the

statement for ∆(1). Since OC♭p is a valuation ring with maximal ideal (d1/p∞),

it is enough to show that the dimension of Hn(∆(1)/p)[1/d] as C♭p-vector space
is bigger or equal to the minimal number of generators of Hn(∆(1)/p)/d. By the
étale comparison [BS22, Theorem 1.8], one has Hn(∆(1)/p)[1/d] ≃ Hn

ét(X,Z/p)⊗
C♭p, see for example [FKW24, Lemmas 2.1.6 and 2.2.10]. Hence it is enough
to show that the minimal number of generators of Hn(∆(1)/p)/d is smaller or
equal to dimFp(Hn

ét(X,Z/p)). By (3.1.5), there is an isomorphism Hn(∆(1)/p ⊗L

OC♭p/d) ≃ Hn
dR(X/p/OC♭p/d), hence an inclusion

Hn(∆(1)/p)/d ↪→ Hn
dR(X/p/OC♭p/d).

By Lemma 3.2.1(3), it remains to show that dimCp(Hn
dR(X/Cp) ≤ dimFp(Hn

ét(X,Z/p)),
which follows from the fact that dimCp(Hn

dR(X/Cp)) = dimQp(Hn
ét(X,Qp)) and the

universal coefficients short exact sequence

0→ Hn
ét(X,Zp)/p→ Hn

ét(X,Z/p)→ Hn+1
ét (X,Zp)[p]→ 0.

(2) This follows from (1) and Theorem 3.1.2.
(3) This follows from (1) and the universal coefficient theorem.
(4) Since X/p is smooth over OCp/p, the sheaf Ωi

X/p/OCp/p is finite locally free over

OCp/p. By Lemma 3.2.1 and the previous point (2), Hi(X/p,Ω j
X/p/OCp/p) and

Hi(∆) are finite locally free OC♭p/d-modules. Hence Lemmas 3.1.6(2) and Theo-
rem 3.1.2, imply that is is enough to show that the conjugate spectral sequence

Ea,b
2 := Ha(Hb(∆ ⊗L k))⇒ Ha+b(∆ ⊗L k)

for ∆ ⊗L k degenerates at the second page. Since these are finitely dimensional
k-vector spaces, it is enough to show that the conjugate spectral sequence

Ea,b
2 := Ha(Hb(φ∗(∆ ⊗L k)))⇒ Ha+b(φ∗(∆ ⊗L k))

degenerates at the second page. By Theorem 3.1.2 and Lemma 3.2.1 the latter
identifies with the conjugate spectral sequence for de-Rham cohomology of Y ,
which degenerates, again by Lemma 3.2.1.

□

3.2.3. Nygaard filtration cohomology groups.

Proposition 3.2.3. Assume that r holds. Then, the natural maps Hn(N≥i/p)
ι
−→ Hn(∆(1)/p)

are injective with image ϕ−1(diHn(∆/p)). In particular, Hn(N≥i/p) is a free OC♭p-module
of rank equal to hn.
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Proof. The proof is by induction on i, where the case i = 0 follows from the fact that
N0 = ∆(1). Assume that i > 0 and that the statement holds for j < i + 1. Since

Im(Hn(N≥i+1/p)
ι
−→ Hn(∆(1)/p)) ⊆ ϕ−1(di+1Hn(∆(1)/p)),

there is a commutative diagram with exact rows

Hn(N≥i+1/p) Hn(∆(1)/p) Hn((∆(1)/p)/(N≥i+1/p))

0 ϕ−1(di+1Hn(∆/p)) Hn(∆(1)/p) Hn(∆(1)/p)/ϕ−1(di+1Hn(∆/p)) 0,

ι

g

in which g is surjective. Hence the statement (and the inductive hypothesis) is equivalent
to the injectivity of g : Hn((∆(1)/p)/(N≥i+1/p)) → Hn(∆(1)/p))/ϕ−1(di+1Hn(∆/p)) for
every n. Observe that ϕ : Hn(∆(1)/p)→ Hn(∆/p) induces a commutative diagram

Hn((∆(1)/p)/(N≥i+1/p)) Hn(∆(1)/p)/ϕ−1(di+1Hn(∆/p))

Hn(∆/p)/di+1,

g

ϕ

ϕ

where the map Hn(∆(1)/p)/ϕ−1(di+1Hn(∆(1)/p)) → Hn(∆/p)/di+1 is injective. There-
fore, the statement (and the inductive hypothesis) is equivalent to the injectivity of ϕ :
Hn((∆(1)/p)/(N≥i+1/p))→ Hn(∆/p)/di+1 for every n.

Consider the commutative diagram with exact rows

Hn((N≥i/p)/(N≥i+1/p)) Hn((∆(1)/p)/(N≥i+1/p)) Hn((∆(1)/p)/(N≥i/p))

0 Hn(∆/p)/d ≃ Hn(∆/p) Hn(∆/p)/di+1 Hn(∆/p)/di 0.

(3.2.4) ϕi ϕ ϕ

di

where the isomorphism in the first term of the bottom row follows from Proposition 3.2.2.
By the inductive assumption, the right arrow is injective, hence it is enough to show that
the map Hn((N≥i/p)/(N≥i+1/p)) → Hn(∆/p) in injective. This is induced by the map of
sheaves

ϕi : (N≥i/p)/(N≥i+1/p)→ ∆/p,

which, by 3.1.2, induces an isomorphism (N≥i/p)/(N≥i+1/p) → τ≤i∆/p. Hence it is
enough to show that the natural map

Hn(τ≤i∆/p)→ Hn(∆/p)

is injective, which follows again from Proposition 3.2.2. □

3.3. Prismatic interpretation of p-adic vanishing cycles.

3.3.1. Vanishing cycles and di-fixed points of Frobenius. The following is essentially
[BMS19, Theorem 10.1], as explained in [Mor18, Remark 3.2]. It gives a relation be-
tween the action of Frobenius in prismatic cohomology, the Nygaard filtration and the
sheaves of vanishing cycles.
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Theorem 3.3.1. If j : X → X is the natural inclusion, then for every i ≥ 0 then there is
a natural long exact sequence

· · · → Hn(X, τ≤iR j∗Z/p)→ Hn(N≥i/p)
ι−φ(1)

i
−−−−→ Hn(∆(1)/p)→ Hn+1(τ≤iR j∗Z/p)→ . . .

Proof. This follows combining [BMS19, Theorem 10.1, Remark 10.3] and [BS22, The-
orem 17.2]. More precisely, since X is proper, for every torsion étale complex of sheaves
F over X the natural maps

Hn(X,F)→ Hn(X̂, i∗F)→ Hn(Y, i∗F)

are isomorphisms, where we write i : Y → X and i : X̂ → X for the natural morphism.
Hence, by [Hub96, Theorem 3.5.13, p. 207], there is a natural isomorphism

Hn(X, τ≤iR j∗Z/p) ≃ Hn(X̂, τ≤iRb∗Z/p),

where b : Shét(X̂η)→ Shét(X̂) is the functor constructed in [Hub96, (3.5.12), p. 207] and
X̂η is the rigid generic fibre of X̂. Then the conclusion follows from the exact triangle
([BMS18, Theorem 10.1])

τ≤iRb∗Z/p→ N≥i/p
ι−φ(1)

i
−−−−→ ∆(1)/p

and [BS22, Theorem 17.2]. □

We now explain when the long exact sequence in Theorem 3.3.1 can be broken in
smaller pieces.

Lemma 3.3.2. Assume that n ≤ i + 1. Then the natural map

Hn(τ≤iR j∗Z/p)→ Hn(N≥i/p)

is injective.

Proof. By Theorem 3.3.1, it is enough to show that

ι − φ(1)
i : Hn−1(N≥i/p)→ Hn−1(∆(1))

is surjective. By [LL23, Lemma 5.32], it is enough to show that Coker(ι − φ(1)
i ) is fi-

nite. Again by Theorem 3.3.1, it is enough to show that Hn(τ≤iR j∗Z/p) is finite. Since
τ>iR j∗Z/p is concentrated in degrees ≥ i+1 one has Hk(τ>iR j∗Z/p) = 0 for k ≤ i. Hence,
since n ≤ i + 1, the exact triangle

τ≤iR j∗Z/p→ R j∗Z/p→ τ>iR j∗Z/p

shows that the natural map

Hn(τ≤iR j∗Z/p)→ Hn(R j∗Z/p)

is injective (and even an isomorphism if n ≤ i). This concludes the proof since

Hn(R j∗Z/p) ≃ Hn
ét(X,Z/p)

is a finite dimensional Fp-vector space. □

Observe that the natural map

s : Hn(∆/p)→ Hn(∆(1)/p)
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is an isomorphism, hence we can build the commutative diagram

(3.3.3)
0 Hn(τ≤iR j∗Z/p) Hn(N≥i/p) Hn(∆(1)/p)

0 Ker(φ − di) Hn(∆/p) Hn(∆/p),

s−1◦ι

ι−φ(1)
i

·di◦s−1

di−φ

where the left vertical map is induced by the other two vertical ones.

Lemma 3.3.4. Assume that r holds. Then, for n ≤ i + 1, the natural map

Hn(τ≤iR j∗Z/p)→ Ker(φ − di)

is an isomorphism.

Proof. By Lemma 3.3.2 and Theorem 3.3.1, the rows of the diagram (3.3.3) are exact. By
Propositions 3.2.2 and 3.2.3, the two right vertical arrows are injective. So the conclusion
follows from the fact that

Hn(N≥i/p) = ϕ−1(diHn(∆/p)),

again by Proposition 3.2.3. □

3.3.2. Proof of Theorem 1.3.2. By construction, the edge map

Hn(XCp ,Z/p)→ H0(XOCp
,Rn j∗Z/p),

in the Leray spectral sequence is induced by the exact triangle

τ≤n−1(R j∗Z/p)→ R j∗Z/p→ τ>n−1(R j∗Z/p),

observing that Hn(XOCp
, τ>n−1(R j∗Z/p)) ⊆ H0(XOCp

,Rn j∗Z/p). Hence

Ker(Hn(XCp ,Z/p)→ H0(XOCp
,Rn j∗Z/p)) = Hn(XOCp

, τ≤n−1(R j∗Z/p)),

and the conclusion follows from Lemma 3.3.4.

4. Total Newton slope and Hodge polygons

In this section we prove Theorem 1.4.1. We start in Section 4.1 by defining and study-
ing the total Newton slope and the Hodge polygon for abstract finite free modules over
OC♭p endowed with a Frobenius, taking inspiration from [Kat79]. Almost by construc-
tion, the total Newton slope will be at least the height of the Hodge polygon; in fact, in
Lemma 4.1.11 we show that they are equal. Then in Section 4.2 we specialise to the
geometric setting and control this height via the Hodge numbers of X, proving Proposi-
tion 4.2.2, which in turn implies Theorem 1.4.1.

4.1. Total Newton slope and Hodge polygon. For this section, let M be a finite free
OC♭p-module of rank r ∈ Z≥1 equipped with a Frobenius-semi-linear map φ that becomes
an isomorphism after inverting d. If M and N are such modules, we write Homφ(M,N)
for the Fp vector space of morphisms as OC♭p-modules that commute with the Frobenius.

Recall that, by [Mil16, Lemma 4.13, p. 128], for every integer i,

Mφ=di
:= Ker(φ − di : M → M)

is an Fp-vector space of rank at most r. If B := e1, . . . , er is a basis of M, we write
MB(φ) ∈ Mr(OC♭p) for the matrix whose ith-column is the coordinates vector of φ(ei) with

respect to B. Furthermore, we chose a compatible system {d1/r}r∈N of roots of d.
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4.1.1. Total Newton slope.

Definition 4.1.1. Given a rational number α ≥ 0, we denote by O(−α) the rank one
OC♭p-module

O(−α) = OC♭p · e

with Frobenius φ given by φ(e) = dαe.

By construction, one has O(−α)⊗O(−β) ≃ O(−α−β). These O(−α) are all the possible
rank 1 modules with Frobenius, as the following lemma shows.

Lemma 4.1.2. If r = 1, then M ≃ O(−α) for a unique α ∈ Q≥0.

Proof. Let x ∈ M be a generator and write φ(x) = λx. Since OC♭p is a valuation ring
whose maximal ideal is generated by dα for α ∈ Q>0, there exist α ∈ Q≥0 and µ ∈ O∗

C♭p

such that λ = dαµ. Then x := e/µ
1

p−1 is a generator of M such that φ(x) = dαx, so that
M ≃ O(−α). For uniqueness, it is enough to observe that Homφ(O(−α),O(−β)) , 0 if
and only if α ≥ β. □

Proposition 4.1.3.
(1) There exists a Frobenius-stable decreasing filtration F• of M, such that

Gri(F•) := Fi/Fi+1 ≃ O(−αi)

for some αi ∈ Q≥0.
(2) If F• and G• are two Frobenius-stable decreasing filtrations such that

Gri(F•) ≃ O(−αi) and Gri(G•) ≃ O(−βi)

for some αi, βi ∈ Q≥0, then ∑
i

αi =
∑

i

βi.

Proof.
(1) We prove this by induction on r. The case r = 1 is Lemma 4.1.2, so assume

r > 1. By the following Lemma 4.1.4, the set

E(M, φ) := {x ∈ M | ∃ i ∈ Q≥0 such that φ(x) = dix and x < m♭M}

is finite and non-empty. In particular, there exists a minimal i ∈ Q≥0 such that
there exists an x ∈ M with φ(x) = dix. Fix such an x; then the OC♭p-module ⟨x⟩
generated by x is isomorphic to O(−i). Thus, by induction it is enough to show
that M/⟨x⟩ is torsion-free (hence free, since OC♭p is a valuation ring). It is enough
to show that if y ∈ M and j ∈ Q≥0 are such that d jy = λx for some λ ∈ OC♭p , then

a := vd(λ) ≥ j. Upon rescaling j, we can assume that y ∈ M \ m♭M and upon
multiplying it by a unit, we can assume that λ = da. Then we have

dp jφ(y) = φ(d jy) = φ(λx) = λpdix = λp−1di+ jy = da(p−1)+i+ jy,

hence φ(y) = da(p−1)+i− j(p−1)y. By the minimality of i and since y ∈ M \m♭M we
get a(p − 1) + i − j(p − 1) ≥ i, hence a ≥ j.

(2) Observe that

O

− r∑
i=1

αi

 ≃ ⊗r
i=1Gri(F•) ≃ ∧r M ≃ ⊗r

i=1Gri(G•) ≃ O

− r∑
i=1

βi

 ,
so the conclusion follows from Lemma 4.1.2. □
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Lemma 4.1.4. The set

E(M, φ) := {x ∈ M | ∃ i ∈ Q≥0 such that φ(x) = dix and x < m♭M}

is finite and non-empty.

Proof. Recall that by [Mil16, Lemma 4.13, p.128], M
[

1
d

]φ=1
is an Fp-vector space of

dimension r, in particular it is finite and non-empty. Hence, to prove the lemma it is
enough to construct a bijection

f : E(M, φ)→ M
[
1
d

]φ=1

.

For x ∈ E(M, φ), we define f (x) := x
di/(p−1) , where i ∈ Q≥0 is the unique rational such that

φ(x) = dix. Since the map is well defined and surjective by definition, we just need to
show injectivity. If x, y ∈ E(M, φ) map to the same element, then

x
di/(p−1) =

y
d j/(p−1) hence d j/(p−1)x = di/(p−1)y.

If i = j, we immediately get x = y. If i , j, then without loss of generality we can
assume j > i and hence

x = d( j−i)/(p−1)y.
This implies x ∈ m♭M, which is a contradiction. □

Remark 4.1.5. The existence of a filtration as in Proposition 4.1.3 is equivalent to the
existence of a basis B of M such that the matrix MB(φ) is upper triangular with dαi on
the diagonal. In particular, TS(M) is the d-adic valuation of the determinant of MC(φ) for
any basis C of M.

Definition 4.1.6. The total slope of M is

TS(M) :=
∑

αi,

where the αi ∈ Q≥0 are the ones appearing in the graded quotients for any Frobenius-
stable decreasing filtration F• of M such that Gri(F•) ≃ O(−αi) for some αi ∈ Q≥0. The
total slope is well defined thanks to Proposition 4.1.3(2).

Example 4.1.7. By contrast, the set of “slopes”, i.e. the set of αi appearing in the filtra-
tion, is not well defined, contrary to what one could expect by analogy with the crystalline
situation (see e.g. [Kat79]), as the following example shows. To simplify the computa-
tion, we assume that p = 2. Let M = OC♭p ⊕ OC♭p be endowed with a Frobenius whose
matrix with respect to the standard basis B of M is given by

MB(φ) =
[
d2 1
0 d1/2

]
.

With respect to the filtration induced by B, the “slopes” are 1/2 and 2. On the other
hand, by Hensel’s lemma, there exists x ∈ OC♭p such that dx2 + x + 1 = 0 and such that

the reduction of x modulo d is 1. In particular, x is a unit. Hence, the elements (x, d1/2)
and (0, 1) form a new basis C of M. One computes that

MC(φ) =
[
d x−1

0 xd3/2

]
,

so that with respect to the filtration induced by C, the “slopes” are 1 and 3/2. Hence the
set of “slopes” is not well defined, as claimed. As an additional remark, observe that in
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the first filtration the “slopes” are increasing, while in the second one they are decreasing
(and neither of the filtrations splits). Thus, even the order of the “slopes” is not well
defined.

4.1.2. Hodge polygon. Since M/φ(M) is finitely presented and OC♭p is a valuation ring
whose maximal ideal is generated by (da)a∈Q>0 , by [Sta25, Tag 0ASP], we have

(4.1.8)
M

φ(M)
≃

⊕
i

OC♭p

dβi

for unique βi ∈ Q and 0 ≤ β1 ≤ β2 ≤ · · · ≤ βr. We call {βi} the Hodge slopes of M.

Remark 4.1.9. By [Sta25, Tag 0AST], there are two bases B, B′ of M such that the
matrix of φ associated to B, B′ is diagonal with entries β1, . . . , βr. In particular, one has

r∑
i=1

βi = vd(det(MC(φ))),

for any basis C of M.

Definition 4.1.10. Let P0 := (0, 0) ∈ R2 and for 1 ≤ j ≤ r, let

P j := ( j,
j∑

i=1

βi) ∈ R2

We define the Hodge polygon of M as the union, for 0 ≤ j ≤ r − 1, of the segments that
join P j and P j+1. The height h(M) of the Hodge polygon of M is the height of the end
point, that is, the sum of all βi’s.

Lemma 4.1.11. The total slope of M is equal to the height of the Hodge polygon of M.

Proof. This follows from the fact that both are the d-adic valuation of the determinant of
MB(φ) for any basis B of φ, see Remarks 4.1.5 and 4.1.9. □

4.2. Hodge polygon and Hodge numbers. Let X be a smooth proper scheme over OCp

and X̂ its formal p-adic completion. We also write Y for Xk and X for XCp . We let

ha,b := dimCp(Hb(X,Ωa
X/Cp

)) and hn := dimCp(Hn
dR(X/Cp)) = dimQp(Hn

ét(X,Qp))

If r holds, then Hn(∆/p) is a finite free OC♭p-module of rank hn by Proposition 3.2.2.
Hence, Hn(∆/p) has a total Newton slope TS(Hn(∆/p)), a Hodge polygon and a Hodge
height h(Hn(∆/p)). We now explain how to compute them from the geometry of X.

Definition 4.2.1. Let Q0 := (0, 0) ∈ R2 and for 1 ≤ j ≤ hn, let

Q j := (
j∑

i=0

hi,n−i,

j∑
i=0

i · hi,n−i) ∈ R2.

We define the geometric Hodge polygon of Hn
dR(X/OCp) as the union, for 0 ≤ j ≤ r − 1,

of the segments that join Q j and Q j+1.

Proposition 4.2.2. Assume that r holds. Then the Hodge polygon of Hn(∆/p) coincides
with the geometric Hodge polygon of Hn

dR(X/OCp).

Combining Proposition 4.2.2 and Lemma 4.1.11, we get Theorem 1.4.1.

https://stacks.math.columbia.edu/tag/0ASP
https://stacks.math.columbia.edu/tag/0AST
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Proof of Proposition 4.2.2. By definition, we need to show that that there exists an iso-
morphism

Hn(∆/p)/φ(Hn(∆/p)) ≃
n⊕

j=0

(OC♭p/d
j)h j,n− j

,

which in turn is equivalent to showing that there exists an isomorphism

Hn(∆/p)/ϕ(Hn(∆(1)/p)) ≃
n⊕

j=0

(OC♭p/d
j)h j,n− j

.

This is equivalent to showing that, for every i ∈ Z≥0, there exists an isomorphism

Hn(∆/p)/(ϕ(Hn(∆(1)/p)), di) ≃
i−1⊕
j=0

(OC♭p/d
j)h j,n− j

⊕ (OC♭p/d
i)

∑
j≥i h j,n− j

.

Choose bases of Hn(∆(1)/p)) and Hn(∆/p) so that the matrix of ϕ with respect to these
bases is diagonal (see Remark 4.1.9) with entries the Hodge slopes {β1 . . . βr} of Hn(∆/p).
Then, the commutative diagram with exact rows and surjective vertical arrows

0 Hn(∆(1)/p)) Hn(∆/p) Hn(∆/p)
ϕ(Hn(∆(1)/p)) 0

0 Hn(∆(1)/p))
ϕ−1(diHn(∆/p))

Hn(∆/p)
di

Hn(∆/p)
(ϕ(Hn(∆(1)/p)),di) 0

ϕ

ϕ

induces a commutative diagram with exact rows

0 Hn(∆(1)/p)
ϕ−1(diHn(∆/p))

Hn(∆/p)
di

Hn(∆/p)
(ϕ(Hn(∆(1)/p)),di) 0

0
⊕

β j<i

dβ jO
C♭p

di

Or
C♭p

di

⊕
β j<i

O
C♭p

dβ j
⊕

⊕
β j≥i

O
C♭p

di 0,

ϕ ≃

ϕ

≃ ≃

in which the vertical arrows are isomorphisms, the bottom left arrow is the natural inclu-
sion and r := hn. Hence, it is enough to show that there exists an isomorphism

Hn(∆(1)/p)/ϕ−1(diHn(∆/p)) ≃
i−1⊕
j=0

(d jOC♭p/d
i)h j,n− j

.

We prove this by induction on i. The case i = 0 is trivial, since all the groups involved
are zero, so assume i ≥ 1. By Proposition 3.2.3 one has

ϕ−1(diHn(∆/p)) = Hn(N≥i/p) and

Hn(∆(1)/p)/Hn(N≥i/p) ≃ Hn((∆(1)/p)/(N≥i/p)) ≃ Hn(∆(1)/p)/ϕ−1(diHn(∆/p)).

Thanks to Proposition 3.2.3, we have a commutative diagram with exact rows and injec-
tive vertical maps (cf. (3.2.4))
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0 Hn((N≥i−1/p)/(N≥i/p)) Hn(∆(1)/p)/Hn(N≥i/p) Hn(∆(1)/p)/Hn(N≥i−1/p) 0

0 Hn(∆/p)/d Hn(∆/p)/di Hn(∆)/di−1 0

ϕi−1 ϕ ϕ

di−1

which can be identified, via the choice of the basis and the inductive hypothesis, with

0 0 0

0 Hn
(

N≥i−1/p
N≥i/p

) ⊕
β j>i−1

dβ jO
C♭p

di ⊕
⊕i−2

j=0

(
d jO

C♭p

di

)h j,n− j ⊕i−2
j=0

(
d jO

C♭p

di−1

)h j,n− j

0

0 (OC♭p/d)r (OC♭p/d
i)r (OC♭p/d

i−1)r 0,di−1

in which the upper right map is induced by the canonical projection d jOC♭p/d
i → d jOC♭p/d

i−1.

It remains to show that Hn((N≥i−1/p)/(N≥i/p)) is a finite free OC♭p/d-module of rank∑i
j=0 h j,n− j. To prove this, observe that, by Theorem 3.1.2, one has an isomorphism

(N≥i−1/p)/(N≥i/p) ≃ τ≤i(∆/p).

On the other hand, recall from Theorem 3.1.2 that Hb(∆/p) ≃ Ωb
X/p/O

C♭p
/d, so that

Ha(Hb(∆/p)) is a free OC♭p/d-module of rank hb,a, by Lemma 3.2.1. The conclusion now

follows from the degeneration of the conjugate spectral sequence for ∆/p, see Proposi-
tion 3.2.2. □

Remark 4.2.3. It follows from Proposition 4.2.2 that the Hodge slopes βi are integers.

5. Proof of the main result

In this section we prove Theorems 1.3.3 and 1.2.1, collecting the fruits of the work
done in the previous sections. We start in Section 5.1 by proving a useful semi-linear
algebra lemma. The proofs of Theorems 1.3.3 and 1.2.1 are then contained in Sections
5.2 and 5.3, respectively.

5.1. A semi-linear algebra lemma.

Lemma 5.1.1. Let M be a finite free OC♭p-module of rank r ∈ Z≥1 equipped with a
Frobenius semi-linear map φ : M → M that becomes an isomorphism after inverting d.
Assume that TS(M) = ir. Then

dimFp(Mφ=di
) = r

if and only if

M ≃
r⊕

i=1

O(−i).
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Proof. The only if implication being clear, we prove the if direction. To do this, we
argue by induction on r, the case r = 1 being a direct computation. So assume r > 1 and
that dimFp(Mφ=di

) = r. By Proposition 4.1.3, there exists a Frobenius-stable decreasing
filtration F• of M and a1 . . . ar ∈ Q≥0 such that

Gr j := F j/F j+1 ≃ O(−a j) and
r∑

j=1

a j = ir.

Since

r = dimFp(Mφ=di
) ≤

r∑
j=1

dimFp(Grφ=di

j ) and O(−a j)φ=di
, 0⇔ a j ≤ i,

the assumption dimFp(Mφ=di
) = r implies that a j ≤ i for every j. Since

∑r
j=1 a j = ir,

this in turn implies that a j = i for every j. Consider the commutative diagram with exact
rows and columns

0 (F1)φ=di
Mφ=di

O(−i)φ=di
= Fp

0 F1 M O(−i) 0.

0 F1 M O(−i) 0.

di−φ di−φ di−φ

Since dimFp((F1)φ=di
) ≤ rankO

C♭p
((F1) = r−1 and dimFp(Mφ=di

) = r, the upper row shows

that dimFp((F1)φ=di
) = r − 1. Since TS(F1) = i(r − 1), by induction F1 ≃

⊕r−1
i=1 O(−i),

hence it is enough to show that the surjective map M → O(−i) admits a φ-equivariant
section. Since dimFp((F1)φ=di

) = r−1 and dimFp(Mφ=di
) = r, the map Mφ=di

→ O(−i)φ=di

is surjective. The OC♭p-module O(−i) is generated by an element e such that φ(e) = die,

thus there exists an element x ∈ Mφ−di
⊆ M mapping to e and the map O(−i) → M

sending e to x gives a φ-equivariant splitting of the surjection M → O(−i). □

Example 5.1.2. In Lemma 5.1.1, to conclude that M ≃
⊕r

i=1 O(−i) it is not enough
to assume that dimFp(Mφ=di

) = r. Some assumptions on TS(M) are necessary, as the
following example shows. Let M = OC♭p ⊕ OC♭p be endowed with the Frobenius φ whose
matrix with respect to the standard basis B of M is given by

MB(φ) :=
[
0 d
1 0

]
Then TS(M) = 1, so that M ; O(−1) ⊕ O(−1), but

Mφ−d = {(apd
p

p2−1 , ad
1

p2−1 ) ∈ OC♭p ⊕ OC♭p for a ∈ Fp2}

is a 2-dimensional Fp-vector space.
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5.2. Proof of Theorem 1.3.3. Arguing by contradiction, we assume that

dimFp(Ker(φ − dn : H2n(∆/p)→ H2n(∆/p)) = rankO
C♭p

(H2n(∆/p))

By Theorem 1.4.1, one has

TS(H2n(∆/p)) =
2n∑
j=0

j · h j,2n− j = n · h2n = n · rankO
C♭p

(H2n(∆/p)),

so we can apply Lemma 5.1.1 to deduce that

H2n(∆/p) ≃ O(−n)
rankO

C♭p
(H2n(∆/p))

.

Hence, the Hodge polygon of H2n(∆/p) is a straight line with slope n. By Proposition
4.2.2, this implies the same for the geometric Hodge polygon of H2n

dR(X/Cp). By defi-
nition, this means that H2n(X/Cp) = Hn(X,Ωn

X/Cp
), that is, Hi(X,Ω2n−i

X/Cp
) = 0 for i , n,

which concludes the proof.

Example 5.2.1. Assume that E is an elliptic curve such that H1(E,∆/p) ≃ O2
OCp

with
Frobenius given, as in Example 5.1.2, by the matrix

MB(φ) =
[
0 d
1 0,

]
so that there is an exact sequence

0→ O
( −p

p + 1

)
→ H1(E,∆/p)→ O

( −1
p + 1

)
→ 0.

Let X = E3, so that H3(∆/p) = ∧3((H1(E,∆/p))3). Hence the maximal “slope” appearing
in the filtration of H3(∆/p) is (3p/p + 1), which is greater than 2 if and only if p > 2.
Hence to guarantee that

dimFp(H3(∆/p)φ=d2
) < rankO

C♭p
(H3(∆/p))

it seems that some condition on p are necessary. This seems compatible with the results
in [FKW24].

5.3. Proof of Theorem 1.2.1. This follows from Theorems 1.3.1, 1.3.2 and 1.3.3.

6. Abelian varieties and Kummer varieties

In this section we specialise to the case in which X is an abelian variety. We start
in Section 6.1 by recalling the relationship between prismatic cohomology of abelian
varieties, their p-torsion subgroups and Dieudonné theory. We then apply this to the
products of elliptic curves (Section 6.2), to abelian varieties of positive p-rank and to
their associated Kummer varieties (Section 6.3).

If G is a finite locally free group scheme over OCp we write

0→ G0 → G → Gét → 0

for the étale connected sequence of G, and we denote by G∨ the Cartier dual of G.
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6.1. Prismatic Dieudonné theory. Let C be the category of free OC♭p-modules M en-
dowed with a φ-linear Frobenius φM : M → M which becomes an isomorphism after
inverting d. The following theorem summarises the main results we need from [AL23].

Theorem 6.1.1. There exists an exact contravariant fully faithful functor

D : {p-torsion finite locally free OC♭p- group schemes} → C

such that

(1) D(µp) = O(−1);
(2) D(G∨) ≃ D(G)∨(−1);
(3) D(Z/p) = O;
(4) If A/OCp is an abelian scheme of dimension g, then Hn(A,∆/p) ≃ ∧nD(A[p])

and it has rank
(
2g
n

)
;

(5) D(G)φ=1 ⊗ OC♭p = D(Gét).

Proof. The existence of the functor follows from [AL23, Theorem 5.1.4] and the fact
that a p-torsion Ainf-module has projective dimension ≤ 1 if and only if it is locally
free as OC♭p-module. Then (1) follows from [AL23, Proposition 4.7.3 and the discussion

before], since the map Zp[[q − 1]] → Ainf sending q to [ϵ1/p] satisfies f ( qp−1
q−1 ) = ξ, see

also [Mon22, Corollary 1.3] and [BL22, Notation 2.6.3]. Point (2) is the combination of
point (1) and [AL23, Proposition 4.6.9], while (3) follows from (1) and (2). Finally (4)
is [AL23, Corollaries 4.5.7 and 4.5.8] and (5) follows from [AL23, Remark 4.9.6]. □

6.2. Products of elliptic curves.

Proof of Proposition 1.5.1. Recall that the Künneth formula for étale cohomology

H2
ét(XCp ,Z/p) ≃ H2

ét(ZCp ,Z/p) ⊕ H2
ét(WCp ,Z/p) ⊕ H1

ét(ZCp ,Z/p) ⊗ H1
ét(WCp ,Z/p) ≃

Z/p ⊕ Z/p ⊕ HomCp(Z[p],W[p])

induces, since NS(XCp) ≃ Z ⊕ Z ⊕ HomCp(Z,W), a natural isomorphism

Br(XCp)[p] ≃ HomCp(Z[p],W[p])/HomCp(Z,W).

Since Hi(ZOCp
,∆/p) and Hi(WOCp

,∆/p) are torsion-free by Proposition 3.2.2, the Künneth
formula for prismatic cohomology (see e.g. [AL23, Corollary 3.5.2]) gives an isomor-
phism

H2(XOCp
,∆/p) ≃ H2(ZOCp

,∆/p) ⊕ H2(WOCp
,∆/p) ⊕ H1(ZOCp

,∆/p) ⊗ H1(WOCp
,∆/p)

≃ O(−1) ⊕ O(−1) ⊕ H1(ZOCp
,∆/p) ⊗ H1(WOCp

,∆/p).

Hence, by Theorems 1.3.1 and 1.3.2, it is enough to show that

(H1(ZOCp
,∆/p) ⊗ H1(WOCp

,∆/p))φ=d ≃ HomOCp
(Z[p],W[p]).

By Theorem 6.1.1, this is equivalent to show that

(H1(ZOCp
,∆/p) ⊗ H1(WOCp

,∆/p))φ=d ≃ HomC(D(WOCp
[p]),D(ZOCp

[p])).
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For this, observe that there are natural isomorphisms compatible with the Frobenius

H1(ZOCp
,∆/p) ⊗ H1(WOCp

,∆/p) ≃ Hom(H1(WOCp
,∆/p)∨,H1(ZOCp

,∆/p))

≃ Hom(D(WOCp
[p])∨,D(ZOCp

[p]))

≃ Hom(D(WOCp
[p]∨)(1),D(ZOCp

[p]))

≃ Hom(D(WOCp
[p])(1),D(ZOCp

[p])),

where the first isomorphism follows from the fact that H1(ZOCp
,∆/p) and H1(WOCp

,∆/p)
are finite free, the second and the third from Theorem 6.1.1 and the last from the fact that
WOCp

[p] is self dual. To conclude, observe that

(Hom(D(WOCp
[p])(1),D(ZOCp

[p])))φ=d = (Hom(D(WOCp
[p]),D(ZOCp

[p])))φ=1

= HomC(D(WOCp
[p]),D(ZOCp

[p])). □

The next corollary concerning fields of definition of interesting Brauer classes follows
immediately from Proposition 1.5.1.

Corollary 6.2.1. Let X = Z ×W for elliptic curves Z,W and let L/K be a field extension
with HomL(Z[p],W[p]) = HomCp(Z[p],W[p]). Then the natural map

Br XL[p]/fil0(XL)→ Br(XK)[p]/Br(XK)gb[p]

is surjective.

Remark 6.2.2. In Corollary 6.2.1, one can take L = K(Z[p],W[p]), for example. For
elliptic curves with complex multiplication by the ring of integers of an imaginary qua-
dratic field F, this is related to the ray class field of F with modulus p. Furthermore, if
the CM field satisfies O×F = {±1}, then [New16, Proposition 2.2] shows that it suffices to
take L to be the compositum of K with the ring class field of conductor p, an extension
of F of degree hF ·

(
p −

(
δF
p

))
, where hF is the class number, δF is the discriminant, and(

δF
p

)
is the Legendre symbol for p odd and the Kronecker symbol for p = 2.

Corollary 6.2.3. Let X = Z ×W for elliptic curves Z,W with good reduction and write

KerZ := Ker
(
Z[p](OCp)→ Z[p](k)

)
, KerW := Ker

(
W[p](OCp)→W[p](k)

)
.

(1) Assume that the special fibres of Z,W are ordinary. Then Br(XK)[p]/Br(XK)gb[p]
is one-dimensional, generated by any homomorphism sending an element in KerZ
to an element not in KerW.

(2) Assume that the special fibre of W is ordinary but that of Z is supersingular. Then
Br(XK)[p]/Br(XK)gb[p] is two-dimensional, generated by the homomorphisms
Z[p]→ W[p] whose image is not contained in KerW.

(3) Assume that Z = W and that the special fibre is supersingular. Then any element
in EndCp(Z[p]) whose characteristic polynomial has two distinct roots in Fp gives
a non-zero element in Br(XK)[p]/Br(XK)gb[p]. In particular, the dimension of
Br(XK)[p]/Br(XK)gb[p] is at least one.

Proof.
(1) Since the special fibres of Z,W are ordinary,

ZOCp
[p] ≃ µp × Z/p ≃WOCp

[p].
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Hence HomOCp
(Z[p],W[p]) can be written as,

End(Z/p) ⊕ End(µp) ⊕ HomOCp
(Z/p, µp) ⊕ HomOCp

(µp,Z/p).

Observe that EndOCp
(Z/p) ≃ EndOCp

(µp) ≃ Z/p, generated by the identity.
Moreover, also HomOCp

(Z/p, µp) ≃ Z/p, generated by the morphism sending
1 to a primitive pth-root of unity. By contrast, HomOCp

(µp,Z/p) = 0, since µp is

connected and Z/p is totally disconnected. Since Ker
(
Z[p](OCp)) → Z[p](k)

)
=

µp(Cp) and similarly for W, Proposition 1.5.1 shows that Br(XK)[p]/Br(XK)gb[p]
is one-dimensional, generated by any homomorphism sending an element in
Ker

(
Z[p](OCp)→ Z[p](k)

)
to an element not in KerW.

(2) Since the special fibre of W is ordinary but that of Z is not,

WOCp
[p] ≃ µp × Z/p, while ZOCp

[p] is connected.

Hence,

HomOCp
(Z[p],W[p]) ≃ HomOCp

(Z[p],Z/p) ⊕ HomOCp
(Z[p], µp).

Since ZOCp
[p] is connected, HomOCp

(Z[p],Z/p) = 0, while

HomOCp
(Z[p], µp) = HomOCp

(Z/p,Z[p]∨) ≃ Z[p]∨(OCp) ≃ (Z/pZ)2.

Since Ker
(
W[p](OCp) → W[p](k)

)
= µp(OCp), Proposition 1.5.1 shows that the

quotient Br(XK)[p]/Br(XK)gb[p] is two-dimensional, generated by the homo-
morphisms Z[p]→ W[p] whose image is not contained in KerW.

(3) Since Z has supersingular reduction, Z[p]k is not the product of two subgroups,
hence also ZOCp

[p] is not. In particular, EndOCp
(Z[p]) contains no idempo-

tents apart from 0 and 1. Hence, all non-zero multiples of the idempotent el-
ements different from 0 and 1 in EndCp(Z[p]) give non-zero elements in the
quotient Br(XK)[p]/Br(XK)gb[p]. Since the scalars in EndCp(Z[p]) ≃ M2(Fp)
correspond to elements in Br(XK)gb[p], any element in EndCp(Z[p]) whose char-
acteristic polynomial has two distinct roots in Fp gives a non-zero element in
Br(XK)[p]/Br(XK)gb[p]. □

Remark 6.2.4. One can also obtain a result similar to Corollary 6.2.3(3) given an isogeny
of degree coprime to p between elliptic curves Z and W with supersingular reduction.

Remark 6.2.5. Corollary 6.2.3 sheds light on existing results in the literature. For exam-
ple, Corollary 6.2.3(1) explains the existence of the 3-torsion arithmetically interesting
Brauer class in [Pag25, Example 4.12] and shows that all 3-torsion classes with non-
constant evaluation maps at primes above 3 are scalar multiples of this one. See also
Section 6.2.2.

6.2.1. The CM case. We now specialise to the situation in which X = Z×Z for an elliptic
curve Z with complex multiplication (CM) by the ring of integers OL of an imaginary
quadratic number field L. Writing δ for the discriminant of Q(

√
−d), a generator for the

ring of integers of Q(
√
−d) is given by γ = (δ +

√
δ)/2. Fix a Z/p-basis for Z[p](Cp) of

the form P, γP for some P ∈ Z[p](Cp). With respect to this basis, multiplication by γ on
Z[p](Cp) is given by the following matrix with entries in Z/p:(

0 δ(1−δ)
4

1 δ

)
.



32 EMILIANO AMBROSI, RACHEL NEWTON, AND MARGHERITA PAGANO

(Note that δ(1−δ)
4 ∈ Z so it has a well-defined image in Z/p for all primes p, including

p = 2.)

Corollary 6.2.6. Let X = Z × Z for an elliptic curve Z with CM by OL = Z[γ].
(1) Suppose that p , 2 and let σ ∈ EndCp(Z[p]) be induced by complex conjugation.

Then σ corresponds to a non-zero element in Br(XK)[p]/Br(XK)gb[p].
(2) Suppose that Z has supersingular reduction. If p is odd or p ∤ δ then Br(XK)gb[p]

is trivial. Consequently, the dimension of Br(XK)[p]/Br(XK)gb[p] is two.

Proof.
(1) If Z has supersingular reduction, then this follows from Corollary 6.2.3, since

σ2 = 1 and p , 2 (so σ , 1). Now suppose that Z has ordinary reduction. By
Corollary 6.2.3, since

Ker
(
Z[p](OCp)→ Z[p](k)

)
= µp(Cp)

is one-dimensional and stable by all the endomorphisms of ZOCp
[p], it is enough

to show that µp(Cp) is not stable under the action of σ. The group µp(Cp) is
stable by the action of γ, hence it is an eigenspace for γ. Since Z has ordinary
reduction, δ is a square modulo p. Since the eigenvalues of γ are δ ±

√
δ and δ

is negative, the eigenvectors for γ are swapped by the action of σ. Consequently,
µp(Cp) is not preserved by the action of σ and therefore σ does not lift to an
endomorphism of ZOCp

[p].
(2) Let e1, e2 be idempotent endomorphisms of ZCp[p] defined by the following ma-

trices with respect to our fixed basis:

e1 =

(
0 0
0 1

)
, e2 =

(
0 1
0 1

)
.

Since e1, e2, γ, Id is a basis of EndCp(Z[p]) and γ, Id is a basis of EndCp(Z), it
suffices to prove that all non-zero linear combinations ae1 + be2 ∈ EndCp(Z[p]),
with a, b ∈ Fp, do not lift to EndOCp

(Z[p]). The characteristic polynomial of
ae1 + be2 is X(X − a − b) so if a + b , 0, the result follows from Corollary 6.2.3.

Now suppose that a + b = 0, so θ =
(
0 b
0 0

)
. Note that θ lifts to EndOCp

(Z[p])

if and only if θ + tγ lifts to EndOCp
(Z[p]) for all t ∈ Fp. Now, the characteristic

polynomial of θ + t is

f (X) = X(X − tδ) − t
(
b + t

(
δ(1 − δ)

4

))
.

If we can find t ∈ Fp such that f (X) splits into two linear factors over Fp, then
we are done by Corollary 6.2.3. A theorem of Shimura and Taniyama states that
E has supersingular reduction if and only if p does not split in Q(

√
−d)/Q. If

p ramifies in Q(
√
−d)/Q then p | δ (whereby p is odd by assumption) and f (X)

becomes X2−tb. If we take t = b then f (X) splits, as required. So we may assume
that p does not ramify and must therefore be inert in Q(

√
−d)/Q. Therefore, p

does not divide 1−δ
4 and we can take t ∈ F×p such that b+ t

(
δ(1−δ)

4

)
= 0. Then f (X)

becomes X(X − tδ), which is split.
The last assertion follows immediately as Br(XK)[p] � (Z/p)2 by work of

Grothendieck, see [CS21, Proposition 5.2.9]. □
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Remark 6.2.7. If X = Z1 ×Z2 where Z1,Z2 are elliptic curves with CM by orders O1,O2
in L, then Corollary 6.2.6 applies with the additional constraint that the prime p be co-
prime to [OL : Oi] for i = 1, 2.

6.2.2. Comparison with previous work. Products of CM elliptic curves (and their associ-
ated Kummer surfaces) have been the source of many examples of transcendental Brauer
classes obstructing weak approximation in the literature to date. The results in [IS15;
IS17] are obtained by relating diagonal quartic surfaces to products of curves with CM by
Z[i]. Products of elliptic curves overQwith CM by other maximal orders have been stud-
ied in [New16; AN25]. All these examples of transcendental Brauer classes obstructing
weak approximation are related to complex conjugation as in Corollary 6.2.6(1), possibly
after composing with a geometric isomorphism ϕ : ZQ̄ → WQ̄. This is spelt out in [AN25,
Proposition 4.6] and [Ala24, Lemma 2.3.3], for example.

Note that in the examples in [IS15; IS17; New16; AN25], the relevant Brauer classes
have order p where p is an odd prime of bad, but potentially good, reduction for the
abelian surface. In the good reduction setting, Corollary 6.2.6(1) shows that p-torsion
Brauer classes coming from complex conjugation have non-constant (in fact, surjective –
see Proposition 2.2.3) evaluation maps at primes above p over all finite extensions. In the
ordinary reduction cases, (including p = 5 in [IS15, Theorem 1.1], all cases of [AN25,
Theorem 1.3], and the case ℓ = 7 of [AN25, Theorem 1.4]), Corollary 6.2.3(1) explains
why the only arithmetically interesting Brauer classes come from (scalar multiples of)
complex conjugation. Moreover, Corollary 6.2.6 shows that the constant evaluation map
of the element A ∈ Br(D)[3] for D of type I in [IS17, Theorem 2.3] is merely a temporary
phenomenon – the evaluation map will become surjective after passing to a finite exten-
sion where the surface attains good reduction above 3. This example shows that good
reduction is a necessary hypothesis in Proposition 2.2.3.

6.3. Abelian varieties of positive p-rank and associated Kummer varieties. In this
section we prove Theorem 1.5.3. Let K/Qp be a p-adic field and X an abelian variety
of dimension g ≥ 2 with good reduction. Following [SZ17], given a k-torsor T for the
k-group scheme X[2], we define the associated 2-covering of X as the quotient Y :=
(X ×k T )/X[2] by the diagonal action of X[2]. The antipodal involution ιX on X induces
an involution ιY : Y → Y . Let σ : Y ′ → Y be the blowing-up of the 22g-point closed
subscheme T ⊆ Y . The involution ιY preserves T and so gives rise to an involution ιY′ on
Y ′. The Kummer variety attached to Y is defined as the quotient Y ′/ιY′ =: Kum(XT ) and
it is a smooth proper variety. If p is odd then Kum(XT ) has good reduction, since X has
good reduction.

We write π : Y ′ → Kum(XT ) for the double covering whose branch locus is E :=
σ−1(T ). In [SZ17, Proposition 2.7], Skorobogatov and Zarhin prove that the morphisms
π and σ induce an isomorphism of Γ-modules

φ : Br(Kum(XT )K̄)[p]→ Br(XK̄)[p].

It may be useful to note that φ induces an injection Br(Kum(XT )K̄)gb[p] ↪→ Br(XK)gb[p],
by Theorem 1.3.1.

Proof of Theorem 1.5.3. We start with the part of the statement on abelian varieties. By
Theorems 1.3.1 and 1.3.2, it is enough to show that

rankO
C♭p

(H2(XOCp
,∆/p)) − dimFp(H2(XOCp

,∆/p)φ−d) ≥ 2g − 1 − e.
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Since e > 0, there is a surjection X[p] → Z/p with finite locally free kernel. Since X[p]
is self-dual, there is a short exact sequence of finite locally free group schemes

0→ µp → X[p]→ J → 0,

such that rank(Jét) = e. By Theorem 6.1.1, this induces a short exact sequence

0→ D(J)→ D(X[p])→ O(−1)→ 0

in C. By applying ∧2 and using Theorem 6.1.1, we get an exact sequence

0→ ∧2D(J)→ H2(∆/p)→ D(J) ⊗ O(−1)→ 0.

Hence it is enough to show that

dimFp((D(J) ⊗ O(−1))φ−d) = e

But
dimFp((D(J) ⊗ O(−1))φ−d) = dimFp(D(J)φ−1)

(∗)
= rank(Jét) = e

where (*) follows from Theorem 6.1.1.
We now move to the Kummer variety associated to the X[2]-torsor T . By Theo-

rem 1.3.1 it is enough to prove that

Im(H2(Kum(XT )K̄ ,Z/p)→ H2(K̄(Kum(XT ))sh,Z/p)) ≃ Im(H2(XK̄ ,Z/p)→ H2(K̄(X)sh,Z/p)).

As already pointed out at the beginning of Section 2.2 these maps factor through the p-
torsion of the Brauer group. The result follows from the fact that K̄(Kum(XT ))/K̄(X) is a
degree 2 extension and hence the map H2(K̄(Kum(XT ))sh,Z/p)) → H2(K̄(X)sh,Z/p)) is
injective for p > 2. □

Remark 6.3.1. The problem of constructing even a single transcendental Brauer class
giving an obstruction has hitherto been considered something of a challenge. Our results
in the non-ordinary reduction setting give various instances of K3 surfaces having at least
two independent transcendental elements of odd order p that play a role in the Brauer–
Manin obstruction to weak approximation. For example, one can take X to be an abelian
surface with p-rank one in Theorem 1.5.3, or alternatively consider Kum(Z × Z) where Z
is a CM elliptic curve with supersingular reduction and apply Corollary 6.2.6(2) together
with the last part of the proof of Theorem 1.5.3.
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Études Sci. 129 (2019), pp. 199–310.

[BS22] Bhargav Bhatt and Peter Scholze. “Prisms and prismatic cohomology”. In:
Ann. of Math. (2) 196.3 (2022), pp. 1135–1275.

[BK86] Spencer Bloch and Kazuya Kato. “p-adic étale cohomology”. In: Inst. Hautes
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