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Abstract. Two abelian varieties A and B over a number field K are said

to be strongly locally quadratic twists if they are quadratic twists at every

completion of K. While it was known that this does not imply that A and B
are quadratic twists over K, the only known counterexamples (necessarily of

dimension ≥ 4) are not geometrically simple. We show that, for every prime

p ≡ 13 (mod 24), there exists a pair of geometrically simple abelian varieties
of dimension p − 1 over Q that are strongly locally quadratic twists but not

quadratic twists. The proof is based on Galois cohomology computations and

class field theory.
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1. Introduction

1.1. Twists and local twists. Let K be a number field, write ΓK for its absolute
Galois group, denote by ΣK the set of finite places of K, and for v ∈ ΣK write
Kv for the corresponding completion and K(v) for the residue field. If n ∈ N, we
denote with ζn a primitive nth-root of unity.
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Let A and B be abelian varieties defined over a number field K. A celebrated
theorem of Faltings [Fal83] shows that if the reductions of A and B are isogenous
over K(v) for a density one set of v ∈ ΣK , then A and B are isogenous over K.

Various variants of this result have been then studied (see e.g. [CT22, Fit24,
FP23, KL20, Raj98, Ram00]). In particular, one can show that if the reductions of

A and B are isogenous over K(v) for a density one set of v ∈ ΣK , then A and B
are isogenous over K (see for example [KL20, CT22]).

We will work in the category of abelian varieties up to isogeny. In particular,
we will say that A and B are twists if there exists a finite Galois extension F of K
such that the base changes AF and BF are isogenous. The result in the previous
paragraph naturally raises the question of whether the nature of a twist of A is
determined by that of a density one set of its reductions. Different incarnations of
this problem have been studied (e.g. [Fit24, FP23]). In this paper we continue this
study, focusing on the situation of quadratic twists.

1.2. Quadratic twists and locally quadratic twists. To be more precise, recall
that the set of twists of A is in a canonical bijection with the Galois cohomology
group H1(ΓK ,Aut(AK)), where ΓK is the absolute Galois group of K. For α ∈
H1(ΓK ,Aut(AK)), write Aα for the corresponding twist of A. We say that Aα is
a quadratic twist of A if α is in the image of H1(ΓK , {±1}) → H1(ΓK ,Aut(AK)),
i.e. if α is the image of a continuous character χ : ΓK → {±1}.

We say that A and B are locally quadratic twists if their reductions are quadratic
twists over K(v) for a density one set of v ∈ ΣK . So, in the spirit of the results of
[KL20, CT22], one would like an answer to the following question:

Question 1.1. If A and B are locally quadratic twists, are they quadratic twists?

If End(AK) = Z, the above question admits a positive answer (see [Fit24]).
While it is known that the answer is negative in general (see Section 1.3 for more
details), only non geometrically simple counterexamples (of dimensions 4 and 6)
were known prior to the present work (see [Fit24, Rem. 4.10, §6.2]). The main
result of this paper is a strong negative answer to Question 1.1 for geometrically
simple abelian varieties of arbitrarily big dimension.

Theorem 1.2. Fix a prime p ≡ 13 (mod 24). Every geometrically simple abelian
variety of dimension p−1 over Q such that AQ has complex multiplication by Q(ζ3p)
has a twist which is locally quadratic but not quadratic.

Such abelian varieties exist by [GGL24, Theorem 3.0.1].

1.3. The Grunwald-Wang counterexample. Question 1.1 has already been
studied by the third named author in [Fit24]. There, it is proven that it has a
positive answer if dim(A) ≤ 3, and a counterexample is given in dimension 4. To
motivate the strategy for the proof of Theorem 1.2, let us recall this counterexam-
ple. It consists of the pair of abelian fourfolds A and B, which are the Jacobians
of the genus 4 curves over Q given by the affine models

C : y2 = x9 + x, C ′ : y2 = x9 + 16x.

The curves C and C ′ were found via a computer search. The proof given in [Fit24]
that A and B are locally quadratic twists involved the explicit computation of the
Weil polynomials of A and B via Jacobi sums. The proof that they are not quadratic
twists combined the fact that the minimal extension over which all homomorphisms
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between A and B are defined is Q(ζ16,
8
√
16) with the fact that A and B are not

quadratic twists over any of the three quadratic subfields of this extension. This
required the computation of Frobenius traces at prescribed primes.

As pointed out to us by Alex Smith, the Grunwald–Wang theorem [AT68, Chap.
X] suggests a more conceptual proof: on the one hand, using that 16 admits an 8th-
root αp modulo every odd prime p, one can build the isomorphism ϕαp

: (x, y) 7→
(αpx, α

9/2
p y) over Fp between the reductions of C and C ′, showing that A and B

are quadratic twists modulo every odd prime; on the other hand, exploiting the
fact that 16 does not admit an 8th-root in Q, one can show that A and B are not
quadratic twists as explained in Section 4.2.

As mentioned before, we remark that A and B are not geometrically simple.
This can be shown by observing that they have potential complex multiplication
by Q(ζ16) but non-primitive CM type.

1.4. Strongly locally quadratic twists. We observe that, by Hensel’s lemma,
16 has an 8th-root βp not only over Fp, but also over Qp, for every odd prime p.
Hence A and B have the stronger property of being quadratic twists over Qp for
all odd p.1 This leads to the following definition.

Definition 1.3. Let A and B be two abelian varieties over K. We say that A and
B are strongly locally quadratic twists if they are quadratic twists over Kv for a
density one set of places v of K.

Clearly, if A and B are strongly locally quadratic twists, then they are locally
quadratic twists, but we do not know if the converse holds. With this definition,
we can state the following stronger version of Theorem 1.2.

Theorem 1.4. Fix a prime p ≡ 13 (mod 24). Every geometrically simple abelian
variety over Q of dimension p−1 such that AQ has complex multiplication by Q(ζ3p)
has a twist which is strongly locally quadratic but not quadratic.

We also show (Proposition 3.4) that n = 39 is the minimal odd n for which there
exists a pair of abelian varieties over Q with potential complex multiplication by
Q(ζn) which are strongly locally quadratic twists but not quadratic twists. Similar
techniques can be used to show that a geometrically simple abelian variety over
Q with potential complex multiplication by Q(ζ20) could be twisted in order to
obtain a counterexample in dimension 4, but we do not know if such abelian varieties
exist. Note that our source [GGL24, Theorem 3.0.1] of geometrically simple abelian
varieties over Q with potential complex complex multiplication by Q(ζn) requires
n odd or n ≡ 2 (mod 4).

1.5. Final remark. We would like to end this introduction by stressing the im-
portance of shifting from the notion of locally quadratic twist to that of strongly
locally quadratic twist. Let us write Aut(AK) to denote (End(AK)⊗Q)×. While
group representation techniques are well suited for the study of locally quadratic
twists, the cohomological approach faces the difficulties of the composition of maps

H1(ΓK ,Aut(AK)) → H1(ΓKv ,Aut(AK)) → H1(ΓK(v),Aut(A
K(v)

)).

1One can also show that such A and B are quadratic twists over the completion at every place
of Q(

√
7), see Example 4.4
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In contrast, since Aut(AK) ≃ Aut(AKv
), the study of strongly locally quadratic

twists reduces to the study of the first and more accessible of the above composi-
tion of maps. The adequacy of the cohomological tools for the study and explicit
computation of this map is what ultimately allowed the construction of the coun-
terexamples presented in this article.

Acknowledgements. Fité thanks Université de Strasbourg for its warm hos-
pitality during visits in May 2022, May 2023, and June 2024. Fité was financially
supported by the Ramón y Cajal fellowship RYC-2019-027378-I, by the Maŕıa de
Maeztu Program CEX2020-001084-M, and by the AEI grant PID2022-137605NB-
I00. Coppola was supported by the ANR-CYCLADES project at Université de
Strasbourg. Coppola is a member of the INdAM group GNSAGA. Thanks to Jor-
dan Ellenberg, Alex Smith, and Marco Streng for fruitful conversations.

2. Cohomological characterisation of strongly locally quadratic
twists

The main result of this section is Proposition 2.1, that translates the study
and the construction of strongly locally quadratic twists to a purely cohomological
statement.

2.1. Statements. Let K be a number field and let A/K be a geometrically simple
abelian variety whose geometric endomorphism algebra End(AK) ⊗ Q is a num-
ber field E. In this section we give a cohomological characterisation (Proposition
2.1) of the existence of twists of A which are strongly locally quadratic but not
(globally) quadratic. Write K ⊆ L for the minimal extension over which all the
endomorphisms of A are defined. It is a finite and Galois extension. Let G be the
Galois group of L/K and consider the following commutative diagram with exact
rows and columns.

H1(ΓK , {±1})

H1(ΓK , E×)

1 H1(G,E×/{±1}) H1(ΓK , E×/{±1}) H1(ΓL, E
×/{±1})

H2(ΓK , {±1})

δ

The vertical sequence is induced by the exact sequence of G-modules

1 → {±1} → E× → E×/{±1} → 1

and the horizontal one by inflation and restriction. For an element x ∈ H1(G,E×/{±1})
consider the following conditions:

(i) x ̸= 1;
(ii) x restricts to 1 in H1(C,E×/{±1}) for every cyclic subgroup C ⊆ G;
(iii) x maps to 1 in H2(ΓK , {±1}).

Proposition 2.1. The following are equivalent:

(1) there exists a twist B of A which is strongly locally quadratic but not qua-
dratic;
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(2) there exists an element x ∈ H1(G,E×/{±1}) satisfying (i) − (ii) − (iii)
above.

Corollary 2.2. If G is cyclic then every strongly locally quadratic twist is quadratic.

We will also need a straightforward variant of Proposition 2.1. We say that a
subgroup C ⊆ G is maximally cyclic if it is cyclic and every subgroup H ⊆ G that
properly contains C is not cyclic. Since condition (ii) is clearly equivalent to:

(ii’) x restricts to 1 in H1(C,E×/{±1}) for every maximally cyclic subgroup
C ⊆ G,

we can restate Proposition 2.1 as follows.

Proposition 2.3. The following are equivalent:

(1) there exists a twist B of A which is strongly locally quadratic but not qua-
dratic;

(2) there exists an element x ∈ H1(G,E×/{±1}) satisfying (i) − (ii′) − (iii)
above.

Before giving the proof of Proposition 2.1, we state a general lemma that will be
useful in the rest of the paper.

Lemma 2.4. If K = L, then every strongly locally quadratic twist of A is a qua-
dratic twist.

Proof. Since all endomorphisms of A are defined over K, we also have that all the
endomorphisms of A are defined over Kv for every v ∈ ΣK . Hence

H1(ΓK , E×) = Hom(ΓK , E×) and H1(ΓKv , E
×) = Hom(ΓKv , E

×),

and the maps

H1(ΓK , {±1}) → H1(ΓK , E×) and H1(ΓKv , {±1}) → H1(ΓKv , E
×)

are injective. Let B be a strongly locally quadratic twist of A corresponding to an
element χ ∈ H1(ΓK , E×). It is enough to show that Im(χ) = {±1}. But this holds
on every decomposition group by assumption, hence it holds on all of ΓK , since
decomposition groups form a dense subset of ΓK . □

2.2. Proof. We now prove Proposition 2.1. We start by proving that (1) implies
(2). Let x̃ ∈ H1(ΓK , E×) be the cohomology class associated to B and let x be
its image in H1(ΓK , E×/{±1}). By construction, δ(x) = 1 and, since B is not a
quadratic twist of A, we have that x ̸= 1. Since A and B are locally quadratic
twists, by Lemma 2.4, they are quadratic twists over L, hence the restriction of x
in H1(ΓL, E

×/{±1}) is trivial, and thus x ∈ H1(G,E×/{±1}). We are left to show
that x is trivial when restricted to any cyclic subgroup C ⊆ G. By Chebotarev, for
every cyclic subgroup C ⊆ G there is a positive density set of finite places v of K
(unramified in L) such that the decomposition group Dv is C. In particular we can
choose one v such that Av and Bv are quadratic twists over Kv, so the restriction
of x to H1(ΓKv

, E×/{±1}) is trivial. The conclusion follows from the commutative
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diagram

(2.1)

H1(G,E×/{±1}) H1(ΓK , E×/{±1})

H1(Dv, E
×/{±1}) H1(ΓKv

, E×/{±1}),

since the bottom horizontal arrow is injective.
We now prove prove that (2) implies (1). Let x be as in the statement. Since

the top horizontal map of (2.1) is injective, the image of x in H1(ΓK , E×/{±1}),
that we still denote by x, is nontrivial. By assumption (iii), one has δ(x) = 1
(where δ is the connecting homomorphism defined in Section 2.1), so x lifts to an
element x̃ in H1(ΓK , E×). Thus x̃ defines a twist Ax̃ of A, which is not quadratic
since x ̸= 1. Let Σ be the set of finite places of K which are not ramified in L, so
that, for every v ∈ Σ, the decomposition group Dv is cyclic. Since Σ consists of
all but finitely many places of K, it is enough to show that for every v ∈ Σ, the
twist Ax̃,v of Av is quadratic. For this, it is enough to show that the restriction
of x ∈ H1(ΓK , E×/{±1}) to H1(ΓKv , E

×/{±1}) is trivial. Since Dv is cyclic, this
follows from assumption (ii) and the commutative diagram (2.1).

3. Geometrically simple counterexamples

In this section, after some group cohomology preliminaries, we prove Theo-
rem 1.4. We then discuss the minimality of our counterexample for n = 39 among
abelian varieties with potential complex multiplication by Q(ζn) for odd n.

3.1. Preliminaries.

3.1.1. Cohomology of cyclic groups. Let C be a finite cyclic group of cardinality
n acting on an abelian group M , written multiplicatively, and write g ∈ C for
a generator. Let MC ⊆ M be the group of elements that are fixed by C and
NC : M → M be the norm map, sending m ∈ M to mg(m) . . . gn−1(m). Recall
from [Ser89, VIII, §4] that one has natural identifications:

(3.1) Hi(C;M) =


MC if i = 0,

Ker(NC)/⟨g(m)m−1⟩m∈M if i is odd,

MC/Im(NC) if i is even.

Under these identifications, if

1 → N → M → Q → 1

is an exact sequence of C-abelian groups, then the connecting morphism

δ : Ker(NC)/⟨g(q)q−1⟩q∈Q ≃ H1(C,Q) → H2(C,N) ≃ NC/Im(NC)

has the following description: for x ∈ Ker(NC), choose a lift x̃ ∈ M and set
δ(x) := NC(x̃).

Finally, for i > 0 we note that Hi(C, {±1}) ≃ {±1} if C is of even order and
Hi(C, {±1}) = 1 otherwise.
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3.1.2. Preliminary lemmas. Assume that E/F is a finite Galois extension of number
fields with Galois group G and consider the short exact sequence of G-modules

(3.2) 1 → {±1} → E× → E×/{±1} → 1.

Lemma 3.1.
(1) The connective morphism H1(G,E×/{±1}) → H2(G, {±1}) is injective. If

G is cyclic, it is induced by the norm map under the identifications (3.1).
(2) There is a natural short exact sequence

1 → F×/{±1} → (E×/{±1})G → H1(G, {±1}) → 1.

Proof.
(1) Injectivity follows from Hilbert’s 90th theorem, while the description of the

map in the case of a cyclic group follows from the previous discussion.
(2) This follows again from Hilbert’s 90th theorem applied to the exact se-

quence in cohomology induced by (3.2). □
Assume now thatK is a number field and that A is a geometrically simple abelian

variety over K whose geometric endomorphism algebra End(AK)⊗Q is a number
field E. We let K ⊆ L be the minimal extension over which all the endomorphisms
of A are defined. By Galois theory, Gal(L/K) is isomorphic to Gal(E/F ), where
F = End(A)⊗Q.

Lemma 3.2. Let K ⊆ F ⊆ L be an intermediate Galois extension corresponding
to a normal subgroup H ⊆ G = Gal(L/K). Let x ∈ H1(G,E×) and suppose that
[F : K] is odd. Then x satisfies the conditions (i), (ii), (iii) of Proposition 2.1 if
and only its restriction to H does.

Proof. Consider the commutative diagram

H1(G,E×/{±1}) H2(ΓK , {±1})

H1(H,E×/{±1}) H2(ΓF , {±1}).

Since [G : H] is odd, by [NSW00, Prop. 1.6.9] the rightmost vertical map is
injective, so conditions (i) and (iii) are equivalent for H and G.

To prove that also condition (ii) is equivalent for H and G, observe first that
condition (ii) for G clearly implies the one for H. Conversely, assume now that
condition (ii) holds for H, and let C ⊆ G be a cyclic subgroup. Consider the
commutative diagram

H1(G,E×/{±1}) H1(C,E×/{±1}) H2(C, {±1})

H1(H,E×/{±1}) H1(C ∩H,E×/{±1}) H2(C ∩H, {±1})

where the injectivity of the rightmost horizontal arrows is due to Lemma 3.1. Since
C/C ∩ H ≃ CH/H ⊆ G/H is of odd order, the rightmost vertical map is also
injective, thus the vanishing of the restriction of x to H1(C ∩H,E×/{±1}) implies
the vanishing of the restriction of x to H1(C,E×/{±1}). □
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3.2. An infinite family of counterexamples. We start recalling the statement
of our main result.

Theorem 3.3. Let p be an odd prime such that p ≡ 13 (mod 24). Let A be a
geometrically simple abelian variety over Q such that AQ has complex multiplication

by E := Q(ζ3p). Then there exists a twist of A which is strongly locally quadratic
but not quadratic.

Since A has potential complex multiplication by E and it is geometrically simple,
by [Shi98, Prop. 26 and Prop. 28, Chap. II], the reflex field of E is E itself. Then,
by [Shi98, Prop. 20.4] or [Shi71, Prop. 5.17] or [Lan83, Thm. 1.1, Chap. 3], the
field E is also the minimal field of definition of all the endomorphisms of A.

We write G := Gal(E/Q) and G1 := Gal(E/Q(
√
−3)), so that G/G1 ≃ Z/2Z.

Let σ be the projection of complex conjugation to G/G1. It naturally acts on
(E×/{±1})G1 .

Since p ≡ 1 (mod 3), it splits in Q(
√
−3). Hence there exist a, b ∈ Q such that

a2 + 3b2 = 3p.

We let y :=
a+ b

√
−3√

−3p
∈ E×/{±1} and we observe that y ∈ (E×/{±1})G1 .

By construction, one has σ(y)y = −1, so we can associate to y a cohomology
class x ∈ H1(G/G1, (E

×/{±1})G1). By inflation, we get a cohomology class x ∈
H1(G,E×/{±1}). By Proposition 2.1, it is then enough to show that x satisfies
the conditions (i), (ii′) and (iii) from Section 2.1.

3.2.1. Condition (i). Since the inflation map is injective, it is enough to show that
x is nontrivial in H1(G/G1, (E

×/{±1})G1). By Lemma 3.1, there is a short exact
sequence of G/G1-modules

1 → Q(
√
−3)×/{±1} → (E×/{±1})G1 → H1(G1, {±1}) → 1.

Since G1 is cyclic of even order, we have that H1(G1, {±1}) ≃ {±1}. Since y ∈
(E×/{±1})G1 is not in the image ofQ(

√
−3)×/{±1} → (E×/{±1})G1 , it maps non-

trivially in H1(G1, {±1}). Since G/G1 is cyclic of even order and it acts trivially
on H1(G1, {±1}) ≃ {±1}, one has

H1(G/G1, H
1(G1, {±1})) ≃ H1(G/G1, {±1}) ≃ {±1} ≃ H1(G1, {±1}).

The composition of the map

H1(G/G1, (E
×/{±1})G1) → H1(G/G1, H

1(G1, {±1}))

with the above isomorphism sends x to the image of y under the map (E×/{±1})G1 →
H1(G1, {±1}). We have seen that this image is nontrivial, and hence x is nontrivial
as well.

3.2.2. Condition (ii’). Let Q ⊆ k be the maximal subextension of Q ⊆ E of odd
degree. By Lemma 3.2, proving (ii′) is equivalent to proving it after restricting to
k. We will denote by R the maximal totally real subfield k(ζ3p + ζ3p) of E. Since
p ̸≡ 1 (mod 8), the group H := Gal(E/k) is isomorphic to Z/2Z × Z/4Z, and we
have the following diagram of intermediate extensions.
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E = Q(ζ3p)

k(
√
−3,

√
−3p) k(ζp) R

k(
√
−3) k(

√
−3p) k(

√
p)

k

Q

2
2

2

2
2

2
2 2

2 2 2

p−1
4

There are only four maximally cyclic subgroups H1, . . . ,H4 ⊆ H, corresponding
to the four extensions of k depicted in the diagram below.

E

k(
√
−3) k(

√
−3p) k(ζp) R

k

H1≃Z/4Z

H2≃Z/4Z H3≃Z/2Z

H4≃Z/2Z

We write σi for a generator of Hi. Since, by construction, x is inflated from H/H1,
it goes to 1 in H1(H1, E

×/{±1}).
Recall from Lemma 3.1 that the norm map

NHi
: H1(Hi, E

×/{±1}) → H2(Hi, {±1}) ≃ {±1}

is injective. Hence it will suffice to show that NHi
(y) = 1 for i = 2, 3, 4.

Since H2 fixes k(
√
−3p), one has σ2(y) =

a− b
√
−3√

−3p
. In particular, we have

NH2
(y) =

3∏
i=0

σi
2(y) = (yσ(y))2 =

(
3p

−3p

)2

= 1.

Foror i = 3, 4, we see that σi acts nontrivially on both
√
−3 and

√
−3p, thus

sending y to its complex conjugate. Therefore NHi
(y) = yσi(y) = 1.

3.2.3. Condition (iii). Recall that, for every field M , we have H2(ΓM , {±1}) ≃
Br(M)[2]. Hence, the fundamental exact sequence of class field theory yields a
short exact sequence

1 → H2(ΓQ, {±1}) → H2(ΓR, {±1})×
∏
q∈ΣQ

H2(ΓQq
, {±1})

∑
resq−−−−→ 1

2
Z/Z → 0,
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where res∞ : H2(ΓR, {±1}) → 1
2Z/Z and resq : H2(ΓQq

, {±1}) → 1
2Z/Z are the

residue morphisms. Hence, it is enough to show that the class of x becomes trivial
in H2(ΓR, {±1}) and in H2(ΓQq , {±1}) for all primes q, except at most one.

To check the infinite place, write C := Gal(E/R) for the Galois group of the
maximal totally real subfield R ⊆ E. Since C is cyclic, the restriction of x to
H1(C,E×/{±1}) is trivial by Section 3.2.2. Then the commutative diagram

H1(G,E×/{±1}) H1(ΓQ, E
×/{±1}) H2(ΓQ, {±1})

H1(C,E×/{±1}) H1(ΓR, E
×/{±1}) H2(ΓR, {±1})

shows that the image of x in H2(ΓR, {±1}) is trivial.
We claim that, for all primes q ̸= 3, the decomposition group Dq ⊆ G is cyclic.

If q ̸= p, this follows from the fact that q is unramified in E. To check that also Dp

is cyclic, we first observe that(
−3

p

)
=

(
3

p

)
=

(
p

3

)
= 1,

by quadratic reciprocity and the assumption p ≡ 1 (mod 4). Hence p splits in
Q(

√
−3), so that Dp ≃ Gal(Q(ζp)/Q) ≃ Z/(p− 1)Z is cyclic.

In particular, the restriction of x to H1(Dq, E
×/{±1}) vanishes by Section 3.2.2.

Hence the commutative diagram

H1(G,E×/{±1}) H1(ΓQ, E
×/{±1}) H2(ΓQ, {±1})

H1(Dq, E
×/{±1}) H1(ΓQq

, E×/{±1}) H2(ΓQq
, {±1})

shows that the image of x in H2(ΓQq
, {±1}) is trivial.

3.3. Minimality of the counterexample. In the previous section, we constructed
an infinite family of geometrically simple counterexamples to Question 1.1. In par-
ticular, when p = 13, we obtain one example in dimension 12. We now show that
such a counterexample is the one of smaller dimension among all geometrically sim-
ple abelian varieties with geometric complex multiplication by Q(ζn) for odd n. To
do so, let n be an odd number such that ϕ(n) < 24 and let A be an abelian variety
as above.

If (Z/nZ)× is cyclic (i.e. n is a power of an odd prime), then no twist of A can
yield a counterexample by Corollary 2.2. This leaves only three possibilities for n,
namely 15 = 3 · 5, 21 = 3 · 7 and 33 = 3 · 11. All of these are excluded by the
following proposition.

Proposition 3.4. Let p be a prime. Let A be an abelian variety over Q such that
AQ has complex multiplication by E := Q(ζ3p) and is geometrically simple. Assume
that either

(1) p ≡ 2 (mod 3), or



11

(2) p ≡ 3 (mod 4).

Then, every strongly locally quadratic twist of A is a (global) quadratic twist of A.

Proof. Since A is geometrically simple and has potential complex multiplication
by E, by [Shi71, Prop. 5.17] or [Lan83, Thm. 1.1, Chap. 3], the field E is
also the minimal field of definition of all the endomorphisms of A. Let G :=
Gal(E/Q). By Proposition 2.1, it is enough to show that there are no non trivial
elements in H1(G,E×/{±1}) which vanish on every cyclic subgroup. To show this,
it suffices to prove that there exists at least one cyclic subgroup H ⊆ G such that
H1(G/H, (E×/{±1})H) = 1, since then restriction to H is injective by inflation-
restriction. For this we will use the following lemma.

Lemma 3.5. Let H ⊆ G be a cyclic index two subgroup corresponding to an imag-
inary quadratic field F = Q(

√
−d) for d ∈ Q×. Then

(1) H1(G/H,F×/{±1}) = 1.
(2) Suppose there exists x ∈ (E×/{±1})H such that NG/H(x) ̸∈ NG/H(F×),

then H1(G/H, (E×/{±1})H) = 1.

Proof. We first consider part (1). By Hilbert’s 90th theorem, the sequence 1 →
{±1} → F× → F×/{±1} → 1 induces a short exact sequence

1 → H1(G/H,F×/{±1}) H2(G/H, {±1}) H2(G/H,F×).

Hence, using the identification (3.2), it is enough to show that the natural map

{±1} ≃ H2(G/H, {±1}) → H2(G/H,F×) ≃ (F×)G/H/NG/H(F×)

is injective. This follows from the fact that −1 is not a norm for the imaginary field
extension F/Q.

To prove part (2), let us write M to denote the quotient of E×/{±1} by
F×/{±1}. The exact sequence from Lemma 3.1

1 F×/{±1} (E×/{±1})H H1(H, {±1}) 1,

shows that M is isomorphic to H1(H, {±1}) ≃ {±1}, so that that, in particular,
Ker(NG/H : M → M) = M . The above exact sequence, together with part (1) of
the lemma, induces an exact sequence

1 → H1(G/H, (E×/{±1})H) → H1(G/H,M)
δ→ H2(G/H,F×/{±1}),

and thus it suffices to show that δ is injective. On the one hand, observe that
H1(G/H,M) ≃ {±1}. On the other hand, by (3.2), if σ is the nontrivial element
of G/H, we have

H1(G/H,M) ≃ Ker(NG/H)/⟨σ(m)m−1⟩m∈M = M/⟨σ(m)m−1⟩m∈M .

Using the identifications from (3.2), we may rewrite δ as

NG/H : M/⟨σ(m)m−1⟩m∈M ≃ {±1} → (F×)G/H/NG/H(F×).

From this, we see that δ(−1) = NG/H(x) and the injectivity of δ follows from the

hypothesis that NG/H(x) ̸∈ NG/H(F×).
□
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We now come back to the proof of Proposition 3.4. Suppose first that p ≡ 2
(mod 3). Recall that G ≃ Z/2Z× Z/(p− 1)Z. Let G1 ≃ Z/(p− 1)Z be the cyclic
subgroup of G fixing F1 := Q(

√
−3). We claim that H1(G/G1, (E

×/{±1})G1) =
1. By [Was97, Exercise 2.1] one has that either

√
−p ∈ E× or

√
−3p ∈ E×.

Hence, by Lemma 3.5, it is enough to show that either p = NG/G1
(
√
−p) or 3p =

NG/G1
(
√
−3p) is not a norm for the field extension F1/Q. Since 3 is a norm, this

amounts to showing that p is not a norm. The latter follows from the condition
p ≡ 2 (mod 3), which is equivalent to the primality of the ideal pOF1 .

Suppose now that p ≡ 3 (mod 4). In this case
√
−p ∈ E× by [Was97, Exercise

2.1], and the extension F2 := Q(
√
−p) ⊆ E is cyclic. Let G2 be its cyclic Galois

group. We claim that H1(G/Gi, (E
×/{±1})Gi) is trivial for either i = 1 or i = 2.

By Lemma 3.5, it is enough to show that either 3 = NG/G2
(
√
−3) is not a norm in

F2/Q or that p = NG/G1
(
√
−p) is not a norm in F1/Q. This amounts to showing

that either (
−3

p

)
= −1 or

(
−p

3

)
= −1.

This is implied by the fact that the product of the above two Legendre symbols is
-1, as a consequence of quadratic reciprocity and the assumption p ≡ 3 (mod 4).

□

4. Grunwald-Wang style counterexamples

In this section we generalise the Grunwald-Wang counterexample from [Fit24]
recalled in Section 1.3. Let K be a field and A be an abelian variety over K. Let
K ⊆ L be the minimal extension over which all the endomorphisms of A are defined
and let G := Gal(L/K). Write E for End(AL)⊗Q.

4.1. Preliminaries. Let B be an abelian variety over K such that BL is the qua-
dratic twist of AL by a quadratic character χ of ΓL. Let L ⊆ Lχ be the quadratic
extension cut by χ. Since K ⊆ Lχ is the field over which all the endomorphisms
of A×B are defined, it is a Galois extension of K whose Galois group is a central
extension

(4.1) 1 → {±1} → Gal(Lχ/K) → G → 1.

Proposition 4.1. If A and B are quadratic twists then (4.1) splits, so that

Gal(Lχ/K) ≃ G× {±1}.

Proof. Recall that H2(G, {±1}) is in bijection with the set of isomorphisms classes
of central extensions of the form 1 → {±1} → H → G → 1.

Let Tra : H1(ΓL, {±1}) → H2(G, {±1}) be the transgression map induced by the
inclusion of the normal subgroup ΓL ⊆ ΓK . Under the aforementioned bijection,
the class of Tra(χ) identifies with the Galois group of the Galois extension Lχ/K.
Hence, it is enough to show that if B is a quadratic twist of A, then Tra(χ) = 1.

By [NSW00, Proposition 1.6.7], we have a commutative diagram

H1(ΓK , {±1}) H1(ΓL, {±1})G H2(G, {±1})

H1(ΓK , E×) H1(ΓL, E
×)G

Res

ι ι′

Tra

Res
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whose first row is exact. Observe that ι′ is injective, since the action of ΓL on E× is
trivial and then H1(ΓK , E×) identifies with the quotient of Hom(ΓK , E×) modulo
conjugation.

Let cB be the element in H1(ΓK , E×) corresponding to B. Note that Res(cB) =
ι′(χ). If A and B are quadratic twists, then there exists a quadratic character χ̃ of
ΓK such that ι(χ̃) = cB . But then

ι′(Res(χ̃)) = Res(ι(χ̃)) = Res(cB) = ι′(χ).

The injectivity of ι′ implies that χ = Res(χ̃) and hence Tra(χ) = Tra(Res(χ̃)) =
1. □

4.2. Grunwald-Wang counterexamples. Let m be a positive integer. Assume
that E contains Q(ζ2m). In the following, we let µn denote the set of all nth roots
of unity. For α ∈ K×, let [α] ∈ H1(ΓK , µ2m) ≃ K×/(K×)2m the corresponding
class. Define Aα as the abelian variety corresponding to the image of [α] through
the map H1(ΓK , µ2m) → H1(ΓK , E×).

Example 4.2. Let A be the Jacobian of the curve given by the affine model C :
y2 = xm+1 + x. The action of µ2m on C given by (x, y) 7→ (ζmx, ζ2my) yields an
inclusion of Q(ζ2m) in E. If Cα denotes the curve given by y2 = xm+1 + αx, then

ϕα : C → Cα , ϕα(x, y) = (α1/mx, α(m+1)/(2m)y)

is an isomorphism over K. The map ξα : ΓK → µ2m defined as ξα(s) := ϕ−1
α ◦ sϕα

is a 1-cocicle. An easy calculation shows that the class of ξα corresponds to [α]
under the Kummer isomorphism. Hence Aα is the Jacobian of the curve Cα.

Proposition 4.3. Assume that L = K(ζ2m), that the only roots of unity contained
in K are ±1, and that there exists a finite subset S ⊆ ΣK such that α ∈ K×,m

v for
all v ̸∈ S.

(1) The abelian varieties A and Aα are strongly locally quadratic twists. More
precisely, A and Aα are quadratic twists over Kv for all v ̸∈ S.

(2) If A and Aα are quadratic twists then either α or −α is an mth power.

Proof. Consider the exact sequence

1 → µ2 → µ2m
(−)2−−−→ µm → 1

where the first arrow is the natural inclusion. For any field extension K ⊆ F , one
has an induced short exact sequence in cohomology

H1(ΓF , µ2) → H1(ΓF , µ2m) → H1(ΓF , µm),

which, in turn, identifies with the exact sequence

F×/(F×)2
(−)m−−−→ F×/(F×)2m → F×/(F×)m

where the last arrow is the natural projection. This shows that [α]F ∈ H1(ΓF , µ2m)
is in the image of H1(ΓF , µ2) as soon as α is an mth-power in F , since this implies
that it becomes trivial in H1(ΓF , µm). Taking F to be Kv for any v ̸∈ S, and
considering the commutative diagram
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H1(ΓF , µ2) H1(ΓF , µ2m)

H1(ΓF , E
×),

we obtain (1).
We are left to prove that if A and Aα are quadratic twists then either α or −α

is an mth power. By the Grunwald-Wang theorem [AT68, p. 96], since ζ2m ∈ L
and α is locally an mth power, it becomes an mth power in L, so that L( 2m

√
α)/L is

of degree two and AL and Aα,L are quadratic twists by the character defining the
extension L ⊆ L( 2m

√
α).

By Proposition 4.1, we see that

Gal(K(ζ2m, 2m
√
α)/K) = Gal(L( 2m

√
α)/K) ≃ Gal(L/K)× {±1}

is abelian. Since the only roots of unity contained in K are ±1, by [Sch77, Theorem
2] we deduce that α2 is a 2mth power, hence that one of α or −α is mth power.
This concludes the proof. □

Example 4.4. In Example 4.2 , take K = Q(
√
7), m = 4, and α = 16. One has

that L = K(ζ16). Then A and Aα are everywhere strongly locally quadratic, but
not globally quadratic, since neither 16 or −16 are 8th-powers in K but 16 is an
8th-power in every localization of K (see [AT68, p. 98]). It would be interesting to
determine for which other values of m one has L = K(ζ2m).

References

[AT68] E. Artin, J. Tate, Class field theory, W. A. Benjamin, Inc., New York-Amsterdam,
1968.

[CT22] A. Cadoret, A. Tamagawa, Ghosts in families of Abelian varieties with a common

isogeny factor, preprint.
[Fal83] G. Faltings, Endlichkeitssätze für abelsche Varietäten über Zahlkörpern, Invent. Math.
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