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Abstract. Let X0 be a smooth geometrically connected variety defined over a finite field Fq

and let E†
0 be an irreducible overconvergent F -isocrystal on X0. We show that if a subobject of

minimal slope of the associated convergent F -isocrystal E0 admits a non-zero morphism to OX0

as a convergent isocrystal, then E†
0 is isomorphic to O†

X0
as an overconvergent isocrystal. This

proves a special case of a conjecture of Kedlaya. The key ingredient in the proof is the study of

the monodromy group of E†
0 and the subgroup defined by E0. The new input in this setting is that

the subgroup contains a maximal torus of the entire monodromy group. This is a consequence of

the existence of a Frobenius torus of maximal dimension. As an application, we prove a finiteness

result for the torsion points of abelian varieties, which extends the previous theorem of Lang–Néron

and answers positively a question of Esnault.
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1. Introduction

1.1. Convergent and overconvergent isocrystals. Let p be a prime number. The first Weil
cohomology constructed to study varieties in characteristic p was the `-adic étale cohomology, where
` is a prime different from p. Its associated category of coefficients is the category of lisse sheaves.
While p-adic étale cohomology is not a Weil cohomology, moving from ` to p one encounters two
main p-adic cohomology theories: crystalline cohomology and rigid cohomology. These two give rise
to different categories of “local systems”: convergent isocrystals and overconvergent isocrystals. Let
Fq be a finite field with q elements, where q is a power of p, and let X0 be a smooth variety over

Fq. We write F-Isoc(X0) (resp. F-Isoc†(X0)) for the category of Qp-linear convergent (resp.
overconvergent) F -isocrystals over X0. By [Ked04], these two categories are related by a natural
fully faithful functor ε : F-Isoc†(X0) → F-Isoc(X0). When X0 is proper, the functor ε is an
equivalence. In general, the two categories have different behaviours. While F-Isoc†(X0) shares
many properties with the category of Weil lisse Q`-sheaves, as explained in [D’Ad20a] and [Ked18],
the category F-Isoc(X0) has some exceptional p-adic features.

For example, for every E0 ∈ F-Isoc(X0), after possibly shrinking X0 to a dense open, there exists
a filtration

0 = E0
0 ⊆ E1

0 ⊆ ... ⊆ En0 = E0

where for each i the quotient E i+1
0 /E i0 has uniquely slope si at closed points and the sequence

s1, . . . , sn is increasing (see [Kat79] and [Ked22, Corollary 4.2]). When E0 = ε(E†0) for some E†0 ∈
F-Isoc†(X0), the subobjects E i0 in general are not in the essential image of ε as well (see [Ked22,

Remark 5.12]). Our main result highlights a new relationship between the subquotients of E†0 in

F-Isoc†(X0) and the ones of E1
0 in F-Isoc(X0).

Theorem 1.1.1 (Theorem 3.1.3). Let E†0 be an irreducible Qp-linear overconvergent F -isocrystal.

If E0 := ε(E†0) admits a subobject of minimal slope F0 ⊆ E0 with a non-zero morphism F0 → OX0

of convergent isocrystals, then E†0 has rank 1.

Theorem 1.1.1 proves a particular case of the conjecture in [Ked22, Remark 5.14]. Even though
the conjecture turned out to be false in general, Theorem 1.1.1 corresponds to the case when F1 ⊆ E1

has minimal slope and E2 is the convergent isocrystal OX0 endowed with some Frobenius structure
(notation as in [ibid.]). Recently Tsuzuki in [Tsu19] proved (a modified version of) Kedlaya’s
conjecture over finite fields. In particular, he gave an alternative proof of Theorem 1.1.1. Our
proof is different and independent. See Remark 3.1.4 for some more details on the differences.

1.2. Torsion points of abelian varieties. Before explaining the main ingredients of the proof
of Theorem 1.1.1, let us describe an application to torsion points of abelian varieties. This was our
main motivation to prove Theorem 1.1.1. Let F be an algebraic closure of Fq and F ⊆ k be a finitely
generated field extension. For an abelian variety A over k we write Trk/F(A) for its k/F-trace (cf.
[Con06, §6]). Recall the classical Lang–Néron theorem (see [LN59] or [Con06]).
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Theorem 1.2.1 (Lang–Néron). If A is an abelian variety over k such that Trk/F(A) = 0, then the
group A(k) is finitely generated.

By Theorem 1.2.1, if we denote by A(n) the Frobenius twist of A by the pn-power Frobenius,
we have a tower of finite groups A(k)tors ⊆ A(1)(k)tors ⊆ A(2)(k)tors ⊆ . . . . In June 2011, in a
correspondence with Langer and Rössler, Esnault asked whether this chain is eventually stationary.
Since ⋃

n≥0

A(n)(k) = A(kperf),

where kperf is a perfect closure of k, an equivalent way to formulate the question is to ask whether
the group of kperf -rational torsion points A(kperf)tors is a finite group. As an application of Theorem
1.1.1, we give a positive answer to her question.

Theorem 1.2.2 (Theorem 4.1.1). If A is an abelian variety over k such that Trk/F(A) = 0, then

the group A(kperf)tors is finite.

Remark 1.2.3. Theorem 1.2.2 was already known for elliptic curves, by the work of Levin in
[Lev68], and for ordinary abelian varieties, by [Rös17, Theorem 1.4]. When ` is a prime different
from p, the group A[`∞] is étale, hence A[`∞](kperf) = A[`∞](k). Therefore, in Theorem 1.2.2, the
finiteness of torsion points of prime-to-p order is guaranteed by Theorem 1.2.1.

In order to deduce Theorem 1.2.2 from Theorem 1.1.1 we use the crystalline Dieudonné theory,
as developed in [BBM82]. The proof of Theorem 1.2.2 is by contradiction. If |A[p∞](kperf)| = ∞,
then there exists a monomorphism Qp/Zp ↪→ A[p∞]ét from the trivial p-divisible group Qp/Zp over
k to the étale part of the p-divisible group of A. Spreading out to a “nice” model A/X of A/k
and applying the contravariant crystalline Dieudonné functor D, one gets an epimorphism of F -
isocrystals D(A[p∞]ét) � D((Qp/Zp)X) ' OX over X. By a descent argument and Theorem 1.1.1,
the quotient extends to a quotient D(A[p∞]) � OX over X. Going back to p-divisible groups, this
gives an injective map Qp/Zp ↪→ A[p∞] over k. Therefore, A[p∞](k) would be an infinite group,
contradicting Theorem 1.2.1.

1.3. Monodromy groups. If X0 is geometrically connected over Fq, the categories F-Isoc(X0)

and F-Isoc†(X0) and their versions without Frobenius structures Isoc(X0) and Isoc†(X0) are
neutral Tannakian categories. The choice of an F-point x of X0 induces fibre functors for all
these categories. To prove Theorem 1.1.1, we study the monodromy groups associated to the

objects involved. For every E†0 ∈ F-Isoc†(X0), we have already seen that we can associate an

object E0 := ε(E†0) ∈ F-Isoc(X0). We denote by E† ∈ Isoc†(X0) (resp. E ∈ Isoc(X0)1) the

isocrystal obtained from E†0 (resp. E0) by forgetting its Frobenius structure. Using the Tannakian
formalism, we associate to each of these objects an algebraic group G(−). They all sit naturally in
a commutative diagram of closed immersions

1We point out that the convention on the subscript 0 is not consistent between F -isocrystals and varieties, namely

E denotes an isocrystal over X0 and not over X.
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G(E) G(E0)

G(E†) G(E†0).

While G(E0) and G(E†0) are the analogues of the arithmetic monodromy group of a lisse sheaf, G(E)

and G(E†) correspond to the geometric monodromy group. If E†0 is irreducible and its determinant

has finite order, as a consequence of class field theory, the group G(E†0)/G(E†) is finite, [D’Ad20a,
Theorem 3.4.7]. We prove that the same is true for G(E0)/G(E).

Proposition 1.3.1 (Proposition 3.1.1). Let E†0 be an irreducible overconvergent F -isocrystal with
finite order determinant. The quotient G(E0)/G(E) is finite.

To prove Proposition 1.3.1, we have to show that G(E) is “big”. We study G(E) as a subgroup
of G(E†) and we prove our fundamental result.

Theorem 1.3.2 (Theorem 2.3.9). If E†0 is an overconvergent F -isocrystal, then G(E) contains a
maximal torus of G(E†).

To prove Theorem 1.3.2, we use the existence of Frobenius tori which are maximal tori of G(E†0)

(Theorem 2.3.3). First we reduce to the case when E†0 is semi-simple and algebraic (cf. Definition
2.3.2). By Theorem 2.3.3, there exists a closed point i0 : x0 ↪→ X0 such that the subgroup

G(i∗0E
†
0) ⊆ G(E†0) contains a maximal torus of G(E†0). Since over a closed point every F -isocrystal

admits an overconvergent extension, one has G(i∗0E
†
0) = G(i∗0E0). Hence, G(E0) contains a maximal

torus of G(E†0). To pass from G(E0) ⊆ G(E†0) to G(E) ⊆ G(E†), we will apply Theorem 2.3.3 to an

auxiliary overconvergent F -isocrystal Ẽ†0 over X0, such that G(Ẽ†) = G(E†), G(Ẽ) = G(E) and with

the additional property that the natural map G(Ẽ0)/G(Ẽ)→ G(Ẽ†0)/G(Ẽ†) is an isomorphism.

Remark 1.3.3. In [Cre92a, page 460] Crew asks whether, under the assumptions of Theorem 1.3.2,
the group G(E) is a parabolic subgroup of G(E†). In two subsequent articles [Cre92b] and [Cre94],
he gives a positive answer to his question in some particular cases. Since parabolic subgroups of
reductive groups always contain a maximal torus, Theorem 1.3.2 is evidence for Crew’s expectation.

To deduce Theorem 1.1.1 from Proposition 1.3.1, we first reduce ourself to the situation where

the determinant of E†0 has finite order. To simplify, let us assume that E0 has constant Newton
polygon, that F0 is equal to E1

0 , the subobject of minimal slope, and that G(E0) is connected.
Proposition 1.3.1 implies that G(E) = G(E0) hence that the morphism E1

0 → OX0 commutes with
the trivial Frobenius structure on OX0 . In particular, E1

0 has slope 0, so that the minimal slope of
E0 is 0. Since the determinant of E0 has finite order, this implies that E1

0 = E0 hence that E0 admits

a quotient E0 � OX0 in F-Isoc(X0). As ε : F-Isoc†(X0)→ F-Isoc(X0) is fully faithful, E†0 admits

a quotient E†0 � O†X0
in F-Isoc†(X0). On the other hand, E†0 is irreducible, so that the quotient

gives actually an isomorphism E†0 ' O
†
X0

.

1.4. Weak (weak) semi-simplicity. As an additional outcome of Theorem 1.3.2, we get a semi-
simplicity result for extensions of constant convergent F -isocrystals (cf. Definition 2.2.2). Recall
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that an overconvergent F -isocrystal E†0 is said pure of weight n, where n is an integer, if for ev-
ery closed point of X0 of degree d over Fq the eigenvalues of the Frobenii at closed points (cf.

[Ked22, Definition 9.5]) have complex absolute value qdn/2 for every isomorphism Qp ' C. Let
F-Isocpure†(X0) denote the Tannakian subcategory of F-Isoc(X0) generated by the essential im-

age via ε : F-Isoc†(X0)→ F-Isoc(X0) of pure objects in F-Isoc†(X0). Thanks to a group-theoretic
argument (Lemma 2.3.8), Theorem 1.3.2 implies the following.

Corollary 1.4.1 (Corollary 2.3.12). A convergent F -isocrystal in F-Isocpure†(X0) which is an
extension of constant F -isocrystals is constant.

For every smooth and proper morphism f0 : Y0 → X0 and every i ∈ N, the subquotients of the
higher direct image Rif0,crys∗OY0 are in F-Isocpure†(X0) by [KM74] and [Shi08] (see [Amb18, Fact
3.1.1.2 and Fact 3.2.1.1]). Therefore, Corollary 1.4.1 applies to these convergent F -isocrystals. In
this text we will say that these convergent F -isocrystals come from geometry.

Using Artin–Schreier–Witt theory, one can construct on A1
Fq

non-constant extensions of constant

unit-root convergent F -isocrystals. One can further construct these extensions in such a way that
the resulting convergent F -isocrystal has log-decay, in the sense of [KM16]. Corollary 1.4.1 shows,
for example, that these F -isocrystals are outside F-Isocpure†(A1

Fq
).

Remark 1.4.2. Let E0 be a convergent F -isocrystal with constant Newton polygons. Corollary
1.4.1 implies that G(E) has no unipotent quotients. Let E1 be the convergent isocrystal which
underlies the subobject of E0 of minimal slope. Since G(E1) is a quotient of G(E), it does not have
unipotent quotients as well. In [Cha13, Conjecture 7.4 and Remark 7.4.1], Chai conjectured that

if E†0 is the higher direct image of a family of ordinary abelian varieties, then G(E1) is reductive.
Corollary 1.4.1 may be thought as a first step towards his conjecture.

1.5. Organization of the paper. In §2 we recall the definition of the monodromy groups of the
various categories of isocrystals and we prove Theorem 1.3.2. In §3 we prove Theorem 1.1.1 and
some of its consequences. Finally, in §4 we prove Theorem 1.2.2.

1.6. Acknowledgements. We learned about the problem of perfect torsion points on abelian
varieties reading a question of Damian Rössler on the website Mathoverflow [Rös11]. We would
like to thank him and Hélène Esnault for their interest and comments on our result. We are
grateful to Brian Conrad and Michel Brion for some enlightening discussions about epimorphic
subgroups and maximal rank subgroups of reductive groups. We also thank Brian Conrad for
the references [BB92] and [Bri17]. We thank Simon Pepin Lehalleur for pointing out a simpler
proof of Lemma 2.3.8 and Raju Krishnamoorthy for some discussions on the crystalline Dieudonné
module functor. We thank Anna Cadoret and Hélène Esnault for suggesting several expository
improvements. Finally, we thank the anonymous referees for many thoughtful comments.

1.7. Notation.

1.7.1. Let K be a characteristic 0 field and C a K-linear Tannakian category. A Tannakian
subcategory of C is a strictly full subcategory of C closed under direct sums, tensor products, duals
and subobjects. For E ∈ C, we denote by 〈E〉 the smallest Tannakian subcategory of C containing
E . Let ω : C → K be a fibre functor. For every E ∈ C, the restriction of ω to 〈E〉 defines a fibre
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functor of 〈E〉. We denote by G(E) the Tannakian group of 〈E〉 with respect to this fibre functor. In
general, the fibre functor will be clear from the context, so that we do not keep ω in the notation.
The group G(E) is called the monodromy group of E . If G(E) is finite we say that E is finite.

1.7.2. Let G be an algebraic group over K. We denote by G◦ the connected component of the
identity of G and by rk(G) the reductive rank of G, namely the dimension of the maximal tori of
G. We say that a subgroup H of G is of maximal rank if rk(H) = rk(G). Besides, we write X∗(G)
for the group of characters of G. When K is a characteristic 0 field and f : G→ H is a morphism
of affine group schemes over K, we say that f is injective if it is a closed immersion and we say that
f is surjective if it is faithfully flat. Since over a characteristic 0 field every affine group scheme is
reduced, this should not generate any confusions.

2. Monodromy of convergent isocrystals

2.1. Review of isocrystals. We recall in this section some basic facts about isocrystals. See
[Ked22, §2] for more details. Throughout §2.1, let κ be a subfield of F. We denote by W (κ) the
ring of Witt vectors of κ and by K(κ) its field of fractions. We write Qp for a fixed algebraic closure

of Qp, and we suppose chosen an embedding of W (F) in Qp. Let Y be a smooth variety over κ.

Definition 2.1.1. We write Isoc(Y/K(κ)) for the category of convergent isocrystals over Y with
respect to K(κ). For every finite field extension K(κ) ⊆ L, we have a category of convergent
isocrystals over Y endowed with an L-structure, [Abe18, §1.4.1], denoted by Isoc(Y/K(κ))L. The
category Isoc(Y ) of Qp-linear convergent isocrystals is defined to be the 2-inductive limit of the

categories Isoc(Y/K(κ))L where L varies among the finite extensions of K(κ) in Qp. We write
OY for the convergent isocrystal associated to the crystalline structure sheaf. We will also consider
the category of Qp-linear convergent F -isocrystals, denoted by F-Isoc(Y ). This category consists

of pairs (E ,Φ), where E is a Qp-linear convergent isocrystal and Φ is a Frobenius structure on E ,

namely a Qp-linear isomorphism F ∗E ∼−→ E where F is the absolute Frobenius.

The category of Qp-linear convergent F -isocrystals has also a different incarnation.

Definition 2.1.2. Let Crys(Y/W (κ)) be the category of crystals of finite OY,crys-modules and
Crys(Y/K(κ)) its isogeny category. As above, one can extend the field of scalars of Crys(Y/K(κ))
to Qp obtaining the category Crys(Y/K(κ))Qp

. We write F-Crys(Y/K(κ))Qp
for the category of

objects in Crys(Y/K(κ))Qp
endowed with a Frobenius structure.

Theorem 2.1.3 (Ogus, Berthelot). There exists a canonical equivalence of categories

F-Crys(Y/K(κ))Qp

∼−→ F-Isoc(Y ).

Proof. By [Ber96, Théorème 2.4.2], there exists an equivalence of categories

F-Crys(Y/K(κ)) ' F-Isoc(Y/K(κ)).

This implies that for every finite field extension K(κ) ⊆ L there also exists an equivalence

F-Crys(Y/K(κ))L ' F-Isoc(Y/K(κ))L.

Taking the 2-inductive limit over all the finite field extensions K(κ) ⊆ L we conclude the proof. �
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Remark 2.1.4. In light of Theorem 2.1.3, we will feel free to refer to convergent F -isocrystals sim-
ply as F -isocrystals. Besides, in what follows we will mostly work with Qp coefficients. Therefore,

when we will talk about (F -)isocrystals we will actually mean Qp-linear convergent (F -)isocrystals
except when it is explicitly said differently.

Definition 2.1.5. Let Isoc†(Y ) be the category of (Qp-linear) overconvergent isocrystals and

F-Isoc†(Y ) the category of (Qp-linear) overconvergent F -isocrystals. The overconvergent isocrystal

associated to the structural sheaf will be denoted by O†Y .

The categories of convergent and overconvergent F -isocrystals are related by a natural functor
ε : F-Isoc†(Y )→ F-Isoc(Y ).

Theorem 2.1.6 ([Ked04]). The functor ε : F-Isoc†(Y )→ F-Isoc(Y ) is fully faithful.

Remark 2.1.7. Even though ε is fully faithful, the essential image is not closed under subquo-
tients. Therefore, the essential image is not a Tannakian subcategory in the sense of §1.7.1, so
that the induced morphism on Tannakian groups is not surjective. Nevertheless, the morphism is
an epimorphism in the category of affine group schemes (cf. [BB92]). See also Remark 2.3.11 for
further comments.

Definition 2.1.8. Suppose that Y is connected and let E be an F -isocrystal of rank r. We denote
by {aηi (E)}1≤i≤r the set of generic slopes of E . We use the convention that aη1(E) ≤ · · · ≤ aηr(E), thus
the choice of the ordering does not agree with [DK17]. We say that E is isoclinic if aη1(E) = aηr(E).
A subobject F of E is of minimal slope if it is isoclinic of slope aη1(E). See [Ked22, §3 and §4] for
more details about slopes.

2.2. The fundamental exact sequence. We shall briefly review the theory of monodromy groups
of F -isocrystals. These monodromy groups have been studied at the beginning by Crew in [Cre92a].
More recent work can be found in [D’Ad20a]. In Proposition 2.2.4, we recall a fundamental diagram
of monodromy groups that we will extensively use in the next sections.

Notation 2.2.1. Let X0 be a smooth geometrically connected variety over Fq. We choose once and
for all an F-point x̃ of X0. This defines fibre functors for all the Tannakian categories of isocrystals

previously defined. We write 1†0 for the overconvergent F -isocrystal O†X0
endowed with its canonical

Frobenius structure. For every E†0 ∈ F-Isoc†(X0) we consider three associated objects. We denote

by E† ∈ Isoc†(X0) the overconvergent isocrystal obtained from E†0 by forgetting the Frobenius

structure. The image of E†0 in F-Isoc(X0) will be denoted by removing the superscript †. At the
same time, E will be the convergent isocrystal in Isoc(X0), obtained from E0 ∈ F-Isoc(X0) by
forgetting its Frobenius structure. Here a summary table.

Isocrystal F -isocrystal

Convergent E E0

Overconvergent E† E†0
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For each of these objects we have a monodromy group G(−) (see §1.7.1) with respect to the fibre
functor associated to our F point x̃.

Definition 2.2.2. We say that a convergent isocrystal is trivial if it is isomorphic to 1⊕r for some
r ∈ N. An F -isocrystal E0 is said constant if the convergent isocrystal E is trivial. We denote by
F-Isoccst(X0) the strictly full subcategory of F-Isoc(X0) of constant objects. For E0 ∈ F-Isoc(X0),
we denote by 〈E0〉cst ⊆ 〈E0〉 the Tannakian subcategory of constant objects and by G(E0)cst the

Tannakian group of 〈E0〉cst. Finally, for α ∈ Qp and E0 ∈ F-Isoc(X0), we denote by E(α)
0 the

F -isocrystal obtained from E0 multiplying its Frobenius structure by α. We will call E(α)
0 the twist

of E0 by α. We give analogous definitions for overconvergent isocrystals.

Remark 2.2.3. The category F-Isoccst(X0) is a Tannakian subcategory of F-Isoc(X0) in the sense
of §1.7.1. Let pX0 : X0 → Spec(Fq) be the structural morphism of X0. Every constant F -isocrystal
is the inverse image via pX0 of an F -isocrystal defined over Spec(Fq). Since X0 is geometrically
connected over Fq, the functor p∗X0

is fully faithful, thus the same is true for F-Isoccst(X0). The

category F-Isoc(Spec(Fq)) is equivalent to the category of Qp-vector spaces endowed with a linear
automorphism (induced by the Frobenius structure). Hence F-Isoc(Spec(Fq)) is equivalent to the

category of Qp-linear representation of Z. Finally, we recall that since F-Isoc†(Fq) = F-Isoc(Fq),
the natural functor ε : F-Isoc†(X0) → F-Isoc(X0) induces an equivalence of categories between

F-Isoc†cst(X0) and F-Isoccst(X0).

The following proposition shows that these monodromy groups fit into exact sequences, analogous
to the fundamental exact sequence relating the arithmetic and the geometric monodromy groups
of a lisse sheaf. This holds in general for neutral Tannakian categories with Frobenius, [D’Ad20a,
Appendix A]. See also [DE20, Corollary 1.6].

Proposition 2.2.4. Let X0 be a smooth geometrically connected variety over Fq and let E†0 be an
overconvergent F -isocrystal over X0. There exists a functorial commutative diagram

(2.2.4.1)

1 G(E) G(E0) G(E0)cst 1

1 G(E†) G(E†0) G(E†0)cst 1

with exact rows. The left and the central vertical arrows are injective and the right one is surjective.

Moreover, G(E0)cst and G(E†0)cst are commutative algebraic groups.

Proof. The inverse image functor with respect to the q-power Frobenius of X0, is an equivalence of
categories both for the convergent and overconvergent isocrystals over X0 (see [Ogu84, Corollary
4.10] and [Laz17]). The exactness of the rows then follows from [D’Ad20a, A.2.2.(iii)]. In addi-
tion, the right vertical arrow is surjective because, by the discussion in Remark 2.2.3, the functor

〈E†0〉cst → 〈E0〉cst is fully faithful and the essential image is closed under subquotients. Finally, by

[D’Ad20a, A.2.2.(iv)], the algebraic groups G(E0)cst and G(E†0)cst are commutative. �

Remark 2.2.5. We do not know whether the natural quotient ϕ : G(E0)cst � G(E†0)cst is an
isomorphism in general. Via the Tannakian formalism, to prove the injectivity of ϕ, one has to
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show that the embedding 〈E†0〉cst ↪→ 〈E0〉cst is essentially surjective. While every F0 ∈ 〈E0〉cst comes

from an object F†0 in F-Isoc†(X0), we do not know whether such an F†0 lies in 〈E†0〉. A priori,
it might happen that a non-constant subobject F0 ⊆ E0 admits a constant quotient F0 � T0.

In this case it is unclear whether T0 is in the essential image of 〈E†0〉cst ↪→ 〈E0〉cst. This will be

the main issue in the proof of Theorem 2.3.9. We bypass the problem by embedding E†0 in an

auxiliary overconvergent F -isocrystal Ẽ†0 with G(Ẽ0)cst ' G(Ẽ†0)cst. As an application of Theorem

2.3.9, we will also prove in Corollary 2.3.10 that if E†0 is algebraic (cf. §2.3.2) and semi-simple, then

ϕ : G(E0)cst � G(E†0)cst is an isogeny of linear algebraic groups.

2.3. Maximal tori. In this section, we briefly recall the main theorem on Frobenius tori of over-
convergent F -isocrystals in [D’Ad20a, §4.2] and we use it to prove Theorem 2.3.9. For this task, the
main issue is to pass from the arithmetic situation (Corollary 2.3.5) to the geometric one (Theorem
2.3.9). We keep the notation as in §2.2.1

Definition 2.3.1. Let i0 : x0 ↪→ X0 be the closed immersion of a closed point of X0. For every

overconvergent F -isocrystal E†0 we have an inclusion G(i∗0E
†
0) ↪→ G(E†0), with G(i∗0E

†
0) commutative.

The image of the maximal torus of G(i∗0E
†
0) in G(E†0) is the Frobenius torus of E†0 at x0, denoted by

Tx0(E†0).

Thanks to Deligne’s conjecture for lisse sheaves and overconvergent F -isocrystals, for a certain
class of overconvergent F -isocrystals is possible to construct `-adic companions where ` is a prime
different from p, [AE19]. From this construction one can translate results known for lisse sheaves
to overconvergent F -isocrystals. Theorem 2.3.3 is an example of such a technique (see also §4.3.2).
For the existence of companions one needs some mild assumptions on the eigenvalues of the Frobenii
at closed points.

Definition 2.3.2. An overconvergent F -isocrystal E†0 is algebraic if the eigenvalues of the Frobenii
at closed points (cf. [Ked22, Definition 9.5]) are algebraic numbers.

Theorem 2.3.3 ([D’Ad20a, Theorem 4.2.11]). Let E†0 be an algebraic overconvergent F -isocrystal

over X0. There exists a Zariski-dense set of closed points x0 of X0 such that the torus Tx0(E†0) is

a maximal torus of G(E†0).

Remark 2.3.4. It is worth mentioning that when E†0 is pure Theorem 2.3.3 is also a consequence

of the new crystalline Čebotarev density theorem proven by Hartl and Pál in [HP18, Theorem

12.2]. Note that E†0 is pure if it comes from geometry (cf. §1.4) or, by [AE19, Theorem 2.7], if it is
irreducible with finite order determinant.

Corollary 2.3.5. Let E†0 be an algebraic overconvergent F -isocrystal. The closed subgroup G(E0) ⊆
G(E†0) is a subgroup of maximal rank.

Proof. Thanks to Theorem 2.3.3, we can find a closed embedding of a closed point i0 : x0 ↪→ X0

such that Tx0(E†0) is a maximal torus of G(E†0). We have a commutative diagram
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G(i∗0E0) G(E0)

G(i∗0E
†
0) G(E†0),

∼

where the morphism G(i∗0E0) → G(i∗0E
†
0) is an isomorphism by Remark 2.2.3. Since G(i∗0E

†
0) is a

subgroup of G(E†0) of maximal rank, the same is true for the subgroup G(E0) ⊆ G(E†0). �

Corollary 2.3.6. If E†0 is an algebraic semi-simple overconvergent F -isocrystal, then G(E0)cst and

G(E†0)cst are groups of multiplicative type.

Proof. By Proposition 2.2.4, the algebraic groups G(E†0)cst and G(E0)cst are commutative. It suffices

to verify that they are also reductive. The former is a quotient of G(E†0), which is reductive because

E†0 is semi-simple. The latter is a quotient of G(E0), which by Corollary 2.3.5 is a subgroup of

G(E†0) of maximal rank. Let Ru(G(E0)cst) be the unipotent radical of G(E0)cst. Since G(E0)cst

is commutative, Ru(G(E0)cst) is a quotient of G(E0). Thus Ru(G(E0)cst) is trivial by the group-
theoretic Lemma 2.3.8 below. This concludes the proof. �

Remark 2.3.7. Note that even the `-adic analogue of Corollary 2.3.6 is true and it follows easily
from the homotopy exact sequence of the étale fundamental group.

Lemma 2.3.8. Let K be an algebraically closed field of characteristic 0, let G be a reductive group
over K and let H be a subgroup of G of maximal rank. Every morphism from H to a unipotent
group is trivial. Equivalently, the group Ext1

H(K,K) vanishes.

Proof. Every unipotent group is an iterated extension of copies of Ga. Therefore, it is enough to
show that every morphism from H to Ga is trivial. Suppose there exists a non-trivial morphism
ϕ : H → Ga. As char(K) = 0, the image of ϕ is Ga itself. We write K for the kernel of ϕ and
NG(K◦) (resp. NG(K)) for be the normaliser of K◦ (resp. K) in G. Every map from a torus to
Ga is trivial, thus the subgroup K ⊆ G has maximal rank as well. This implies by [Mil15, Lemma
18.52] that NG(K◦)◦ = K◦. By construction, K is normal in H, thus H is contained in NG(K),
which in turn is contained in NG(K◦). This implies that K◦ = H◦, thus that H/K is a finite group
scheme, contradicting the fact that H/K ' Ga. �

Theorem 2.3.9. Let E†0 be an overconvergent F -isocrystal over X0. The subgroup G(E) ⊆ G(E†)
has maximal rank.

Proof. If we replace E†0 with its semi-simplification with respect to a Jordan–Hölder filtration, we

do not change the reductive rank of G(E†) and G(E). Thus we may and do assume that E†0 is
semi-simple. This implies that E† is semi-simple as well. By [D’Ad20a, Corollary 3.4.2], we can

find an overconvergent F -isocrystal F†0 over X0 which is a direct sum of irreducible overconvergent
F -isocrystals with finite order determinant and such that E† ' F†. Thanks to [ibid., Theorem

3.6.6], we know that F†0 is algebraic. Therefore, up to replacing E†0 with F†0 , we may assume that

E†0 is algebraic.
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Let V †0 (resp. V0) be the representation ofG(E†0) (resp. G(E0)) associated to E†0 (resp. E0). Choose
a set of generators χ1,0, . . . , χn,0 of X∗(G(E0)cst). These correspond to constant F -isocrystals over
X0 of rank 1. Since every constant F -isocrystal comes from an overconvergent F -isocrystal, every

χi,0 extends to a character χ†i,0 of πF-Isoc†
1 (X0), the Tannakian group of F-Isoc†(X0). Note that, a

priori, these characters do not factor through G(E†0)cst (see Remark 2.2.5). Take

Ṽ †0 := V †0 ⊕
n⊕
i=1

χ†i,0

and write Ṽ0 for the induced representation of πF-Isoc
1 (X0), the Tannakian group of F-Isoc(X0).

By construction, the groups of constant characters X∗(G(Ṽ0)cst) and X∗(G(V0)cst) are canonically

isomorphic and generated by the χi,0. Moreover, since Ṽ † ' V † ⊕ Q⊕np and Ṽ ' V ⊕ Q⊕np ,

we get isomorphisms G(Ṽ †) ' G(E†) and G(Ṽ ) ' G(E). Therefore, it is enough to show that

rk(G(Ṽ †)) = rk(G(Ṽ )).
By Proposition 2.2.4, there exists a commutative diagram with exact rows

0 G(Ṽ ) G(Ṽ0) G(Ṽ0)cst 0

0 G(Ṽ †) G(Ṽ †0 ) G(Ṽ †0 )cst 0

where the first two vertical arrows are injective and the last one is surjective. As Ṽ †0 is still algebraic,

by Corollary 2.3.5, rk(G(Ṽ0)) = rk(G(Ṽ †0 )). Since the reductive rank is additive in exact sequences,

it is enough to show that G(Ṽ0)cst and G(Ṽ †0 )cst have the same reductive rank. We will show that

the morphism ϕ : G(Ṽ0)cst → G(Ṽ †0 )cst of the previous diagram is actually an isomorphism. We

already know that ϕ is surjective. As G(Ṽ0)cst and G(Ṽ †0 )cst are groups of multiplicative type by

Corollary 2.3.6, it remains to show that the map ϕ∗ : X∗(G(Ṽ †0 )cst) → X∗(G(Ṽ0)cst) is surjective.

This is a consequence of the construction of Ṽ †0 . Indeed, X∗(G(Ṽ0)cst) = X∗(G(V0)cst) is generated

by χ1,0, . . . , χn,0 and for every i, the character χ†i,0 ∈ X∗(G(Ṽ †0 )cst) is sent by ϕ∗ to χi,0. �

Corollary 2.3.10. Let E†0 be an algebraic overconvergent F -isocrystal. The reductive rank of

G(E†0)cst is the same as the one of G(E0)cst.

Proof. The result follows from Corollary 2.3.5 and Theorem 2.3.9, thanks to Proposition 2.2.4 and
the additivity of the reductive ranks with respect to exact sequences. �

Remark 2.3.11. Using Theorem 2.1.6, one can show that when E† is semi-simple, the functor
〈E†〉 → 〈E〉 is fully faithful. Therefore, in this case, G(E) ⊆ G(E†) is an epimorphic subgroup (cf.
Remark 2.1.7). Nevertheless, Theorem 2.3.9 does not follow directly from this, because epimorphic
subgroups can have, in general, lower reductive rank. For example, let K be any field and let G be
the algebraic group SL3,K. The subgroup H of G defined by the matrices of the forma 0 ∗

0 a ∗
0 0 a−2

 ,
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with a ∈ K×, is the radical of a maximal parabolic subgroup of G. Therefore, by [BB92, §2.(a) and
§2.(d)], H is an epimorphic subgroup of G. On the other hand, the reductive rank of H is 1. Even
more surprisingly, in characteristic 0 every almost simple group contains an epimorphic subgroup
of dimension 3 [ibid., §5.(b)].

Another consequence of Theorem 2.3.9 is the following result that we will not use, but which has
its own interest. We have already discussed it in §1.4.

Corollary 2.3.12. Let E†0 be a overconvergent F -isocrystal and assume that E† is semi-simple.
Every F0 ∈ 〈E0〉 which is an extension of constant F -isocrystals is constant.

Proof. The statement is equivalent to the fact that the group Ext1
G(E)(Qp,Qp) vanishes. The result

then follows from Theorem 2.3.9 thanks to Lemma 2.3.8. �

3. A special case of a conjecture of Kedlaya

3.1. Proof of the main theorem. As a consequence of the results of §2.3, we obtain a special
case of the conjecture in [Ked22, Remark 5.14]. We shall start with a finiteness result. We retain
the notation as in §2.2.1.

Proposition 3.1.1. If E†0 is an irreducible overconvergent F -isocrystal over X0 with finite order
determinant, then G(E0)cst is finite. In particular, every constant subquotient of the F -isocrystal
E0 is finite (cf. §1.7.1).

Proof. We first notice that E†0 is algebraic thanks to Deligne’s conjecture, [AE19, Lemma 4.1]. By

Corollary 2.3.6, we deduce that the algebraic groups G(E0)cst and G(E†0)cst are of multiplicative
type and by Corollary 2.3.10 that they have the same dimensions. Hence it is enough to show that

G(E†0)cst is finite. Thanks to Proposition 2.2.4, this is the same as showing that G(E†) is a finite

index subgroup of G(E†0) or, equivalently, that G(E†)◦ = G(E†0)◦. By [D’Ad20a, Corollary 3.4.5],

G(E†)◦ is the derived subgroup of the reductive group G(E†0)◦, so that it is enough to show that

G(E†0)◦ has finite centre. This follows from the fact that the natural faithful representation of G(E†0)
is irreducible with finite order determinant.

�

Remark 3.1.2. Apart from the known cases of Deligne’s conjecture, Proposition 3.1.1 ultimately
relies on class field theory. Indeed, the key input for [D’Ad20a, Corollary 3.4.5] is the global
monodromy theorem for overconvergent F -isocrystals, proven by Crew (over curves) in [Cre92a].
This theorem, as in the `-adic case, essentially follows from class field theory.

Theorem 3.1.3. Let E†0 be an irreducible overconvergent F -isocrystal over X0. If E0 admits a
subobject of minimal slope F0 ⊆ E0 with a non-zero morphism F → 1, then F = E and E ' 1.

Proof. Observe that both the hypothesis and the conclusion are invariant under twist. Thus, by

[Abe15, Lemma 6.1], we may assume that the determinant of E†0 is of finite order, hence unit-root.

We first prove that E†0 is unit-root as well. If r is the rank of E†0 , since
r∑
i=1

aηi (E
†
0) = aη1(det(E†0)) = 0 and aη1(E†0) ≤ · · · ≤ aηr(E

†
0),
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it suffices to show that aη1(E†0) = 0. Let F � T be the maximal trivial quotient of F . Since F � T
is maximal, it is preserved by the action of F , hence it descends to a quotient F0 � T0, where T0 is a

constant F -isocrystal. The overconvergent F -isocrystal E†0 satisfies the assumptions of Proposition
3.1.1, hence G(T0) is finite. As the F -isocrystal F0 is isoclinic and it admits a non-zero quotient

which is finite, it is unit-root. This implies that aη1(E†0) = 0, as we wanted.

We now prove that E†0 has rank 1. Since E†0 is unit-root, as a consequence of a theorem of Tsuzuki,

[Ked22, Theorem 3.9], the functor 〈E†0〉 → 〈E0〉 is an equivalence of categories. Therefore, if E0 has

a constant subquotient, the same is true for E†0 . But E†0 is irreducible by assumption, thus it has

to be itself a constant F -isocrystal. By Remark 2.2.3, E†0 corresponds to an irreducible Qp-linear

representation of Z. Therefore, since Qp is algebraically closed, E†0 has rank 1, as we wanted. �

Remark 3.1.4. The statement of Theorem 3.1.3 is false in general if we do not assume that
F0 ⊆ E0 is of minimal slope. A counterexample was provided by the second named author, [Ked22,
Example 5.15]. A modified version of this conjecture has been proven by Tsuzuki in [Tsu19] (over
finite field and for curves over perfect fields). In his proof he performs a geometric (p-adic) analysis
on the behaviour of the F -isocrystals both at the level of the completion along closed points, for
example [ibid., Theorem 2.14], and at a global level, [ibid., Theorem 3.27]. In our proof, instead, we
exploit an “arithmetic rigidity” specific to the situation over finite fields. This rigidity is expressed
thanks to [Abe15, Lemma 6.1], which mainly uses class field theory, and the existence of Frobenius
tori of maximal dimension, which cannot happen over more general perfect fields.

3.2. Some consequences.

Corollary 3.2.1. Let E†0 be an overconvergent F -isocrystal over X0 and let F0 be a subobject of E0 of
minimal generic slope. If E† is semi-simple, then the restriction morphism Hom(E ,1)→ Hom(F ,1)
is surjective.

Proof. As E† is semi-simple if we replace E†0 with its semi-simplification with respect to a Jordan–
Hölder filtration, we do not change the isomorphism class of E†. Thus we may and do assume

that E†0 is semi-simple. The proof is then an induction on the number n of summands of any

decomposition of E†0 in irreducible overconvergent F -isocrystals. If n = 1 this is an immediate
consequence of Theorem 3.1.3. Suppose now that the result is known for every positive integer

m < n. Take an irreducible subobject G†0 of E†0 , write H0 := G0 ×E0 F0 and consider the following
commutative diagram with exact rows and injective vertical arrows

0 H F F/H 0

0 G E E/G 0.

As E†0 is semi-simple, the quotient E†0 � E†0/G
†
0 admits a splitting. This implies that the lower

exact sequence splits. We apply the functor Hom(−,1) and we get the following commutative
diagram with exact rows
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0 Hom(E/G,1) Hom(E ,1) Hom(G,1) 0

0 Hom(F/H,1) Hom(F ,1) Hom(H,1).

Since H0 and F0/H0 are subobjects of minimal slope of G0 and E0/G0 respectively, by the inductive
hypothesis the left and the right vertical arrows are surjective. By diagram chasing, this implies
that the central vertical arrow is also surjective, as we wanted. �

Remark 3.2.2. By the theory of weights, if E†0 is pure then E† is semi-simple. Hence one can
apply Corollary 3.2.1 in this situation. The theorem is false instead without the assumption that
E† is semi-simple. For example, when X0 = Gm,Fq , there exits a non-trivial extension

0→ 1
†
0 → E

†
0 → (1†0)(q) → 0,

which does not split in Isoc†(X0). If F0 ⊆ E0 is the rank 1 trivial subobject of E0, then the map
Hom(E ,1)→ Hom(F ,1) is the zero map, even though Hom(F ,1) = Qp.

We end the section presenting a variant of Corollary 3.2.1, where we rather consider morphisms
in F-Isoc(X0).

Corollary 3.2.3. Let E†0 be an algebraic semi-simple overconvergent F -isocrystal with constant
Newton polygons and with minimal slope equal to 0. Let E1

0 ⊆ E0 be the maximal unit-root subobject
of E0. The restriction morphism Hom(E0,10)→ Hom(E1

0 ,10) is an isomorphism.

Proof. Since E†0 is semi-simple, the overconvergent isocrystal E† is semi-simple as well. By Corollary
3.2.1, the restriction morphism Hom(E ,1) → Hom(E1,1) is then surjective. The vector space
Hom(E ,1) endowed with its Frobenius action corresponds, via the equivalence in Remark 2.2.3, to
the maximal constant subobject of E∨0 . Since constant F -isocrystals are overconvergent, the latter

is the same as the maximal constant subobject of (E†0)∨. Combining this with the semi-simplicity

assumption on E†0 , we deduce that the action of F on Hom(E ,1) is diagonalizable. Therefore, the
restriction morphism

Hom(E0,10) = Hom(E ,1)F → Hom(E1,1)F = Hom(E1
0 ,10)

is surjective as well. To prove that it is injective, we note that a morphism from E0 to 10 which
factors through E0/E1

0 is the zero morphism because E0/E1
0 has positive slopes while 10 has slope

0. This concludes the proof. �

4. An extension of the theorem of Lang–Néron

4.1. p-torsion and p-divisible groups. We exploit here Corollary 3.2.1 to prove the following
result on the torsion points of abelian varieties. Let F ⊆ k be a finitely generated field extension
and let kperf be a perfect closure of k. Recall that for an abelian variety A over k we write Trk/F(A)
for its k/F-trace (cf. [Con06, §6]).

Theorem 4.1.1. If A is an abelian variety over k such that Trk/F(A) = 0, then the group

A(kperf)tors is finite.
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As we have already discussed in Remark 1.2.3, thanks to Theorem 1.2.1 it is enough to show
that A[p∞](kperf) is finite.

Notation 4.1.2. We fix some notation for §4. Let A be an abelian variety over k (we do not ask that
Trk/F(A) = 0). Since A/k is of finite type over k, we can choose a subfield k0 ⊆ k which is finitely
generated over Fp such that k = Fk0 and such that there exists an abelian variety A0/k0 endowed
with an isomorphism A ' A0 ⊗k0 k. Let Fq be the algebraic closure of Fp in k0. By spreading
out, we can choose a smooth geometrically connected variety X0 over Fq with Fq(X0) ' k0 and an
abelian scheme f0 : A0 → X0 endowed with an isomorphism A×X Fq(X0) ' A0. Since the Newton
polygons of f0 : A0 → X0 are constant on a dense open subset of X0,after shrinking X0 we may
assume that Newton polygons f0 : A0 → X0 are constant. We denote by X and A the extension of
scalars of X0 and A0 from Fq to F.

Lemma 4.1.3. Let A be an abelian variety over k and let A0/X0 be a model of A as in §4.1.2. If
|A[p∞](kperf)| =∞, then there exists an injective morphism (Qp/Zp)X ↪→ A[p∞]ét.

Proof. We first prove that the group A[p∞](kperf) is isomorphic to A[p∞]ét(X), showing thereby
that A[p∞]ét(X) is infinite as well. As kperf is a perfect field, the map

A[p∞](kperf)→ A[p∞]ét(kperf) = A[p∞]ét(k),

induced by the quotient A[p∞] � A[p∞]ét is an isomorphism. In addition, since the Newton
polygons of f : A→ X are constant, the p-ranks of the fibres of f are all equal. Therefore, for every
i, the constructible étale sheaf A[pi]ét over X is locally constant. Since X is normal, the restriction
morphism A[p∞]ét(X)→ A[p∞]ét(k) induced by the inclusion of the generic point Spec(k) ↪→ X is
then an isomorphism. These two observations show that A[p∞](kperf) ' A[p∞]ét(X), as we wanted.

Since |A[p∞]ét(X)| = |A[p∞](kperf)| = ∞, a standard compactness argument shows that there
exists a morphism (Qp/Zp)X ↪→ A[p∞]ét. For the reader convenience, we quickly recall it. We

define a partition of A[p∞]ét(X) in subsets {∆i}i∈N in the following way. Let ∆0 := {0} and for
i > 0, let ∆i := A[pi]ét(X) \ A[pi−1]ét(X). When j ≥ i, the multiplication by pj−i induces a map
∆j → ∆i. These maps make {∆i}i∈N an inverse system. We claim that every ∆i is non-empty.
Suppose by contradiction that for some N ∈ N, the set ∆N is empty. By construction, for every
i ≥ N the sets ∆i are empty as well. Since every ∆i is finite, this would imply that A[p∞]ét(X)
is also finite, which is a contradiction. As every ∆i is non-empty, by Tychonoff’s theorem, the
projective limit lim←−∆i is non-empty. The choice of an element (Pi)i∈N ∈ lim←−∆i induces an injective

map (Qp/Zp)X ↪→ A[p∞]ét, given by the assignment [1/pi] 7→ Pi. This yields the desired result. �

4.2. Reformulation with the crystalline Dieudonné theory. We restate the classical crys-
talline Dieudonné theory in our setup.

4.2.1. Let

D : {p-divisible groups /X} → F-Crys(X/W (F))

be the crystalline Dieudonné module (contravariant) functor, where F-Crys(X/W (F)) is the cate-
gory of coherent Zp-linear F -crystals (cf. [BBM82, Définition 3.3.6]). By [deJ95, Main Theorem 1]
the functor is fully faithful and, by [BBM82, Théorème 2.5.6.(ii)], there is a canonical isomorphism
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D(A[p∞]) ' R1fcrys∗OA. Extending the scalars to Qp and post-composing with the functor of

Theorem 2.1.3, we define a Qp-linear fully faithful contravariant functor

DQp
: {p-divisible groups /X}Qp

→ F-Isoc(X).

The functor sends the trivial p-divisible group (Qp/Zp)X,Qp
to the (Qp-linear) F -isocrystal (OX , id)

over X. By the classification of p-divisible groups in terms of Dieudonné modules over perfect
fields, if X = Spec(F) the functor induces an equivalence

DQp
: {p-divisible groups /Spec(F)}Qp

∼−→ F-Isoc[0,1](Spec(F)),

where F-Isoc[0,1](Spec(F)) is the category of F -isocrystals with slopes between 0 and 1. Since DQp

is compatible with base change, this implies that for every X, the functor DQp
is exact, it preserves

the heights/ranks and it sends étale p-divisible groups to unit-root F -isocrystals.

4.2.2. By [Ete02, Théorème 7], the F -isocrystal R1f0,crys∗OA0 over X0 comes from an overcon-

vergent F -isocrystal, which we denote by E†0 . This overconvergent F -isocrystal is semi-simple, as
proven over curves in [Pál15, Theorem 1.2] and explained in general in the proof of [D’Ad20b,
Theorem 5.1.6]. Let F0 be the maximal unit-root subobject of E0 and let (F0)X be the inverse
image of F0 to X, as an F -isocrystal. As usual, we also denote by E and F the isocrystals over X0

obtained from E0 and F0 by forgetting the Frobenius structure.
By the discussion in §4.2.1, we have the following result.

Lemma 4.2.3. Let A be an abelian variety over k and let A0/X0 be a model of A as in §4.1.2.
The quotient A[p∞] � A[p∞]ét is sent by DQp

to the natural inclusion (F0)X ↪→ (E0)X .

By using Lemma 4.2.3, we can reformulate Lemma 4.1.3 in the language of F -isocrystals.

Corollary 4.2.4. If |A[p∞](kperf)| =∞, then there exists a quotient (F0)X � (OX , id).

Proof. Thanks to Lemma 4.1.3, if |A[p∞](kperf)| = ∞, then there exists an injective morphism
(Qp/Zp)X ↪→ A[p∞]ét. By Lemma 4.2.3, after we extend the scalars to Qp, this morphism is sent
by DQp

to a quotient (F0)X � (OX , id). �

4.3. End of the proof. We need to rephrase the finiteness of torsion points given by the theorem
of Lang–Néron in terms of morphisms of isocrystals on X0. This will lead finally to the proof of
Theorem 4.1.1.

Proposition 4.3.1. Let A be an abelian variety over k, let A0/X0 be a model of A as in §4.1.2,
and let E0 and F0 be the F -isocrystals defined in §4.2.2. If for some n > 0, there exists a morphism
E → O⊕nX0

such that the image of F is non-zero, then Trk/F(A) 6= 0.

Proof. Write E � T for the maximal trivial quotient of E . Since E � T is maximal, it is preserved
by the action of F on E , hence it defines a quotient E0 � T0, where T0 is the maximal constant quo-
tient of E0. We base change this quotient from X0 to X, as a morphism of F -isocrystals, obtaining
a quotient (E0)X � (T0)X in F-Isoc(X). Since T0 is an F -isocrystal coming from Spec(Fq), the
F -isocrystal (T0)X comes from Spec(F). Thanks to the Dieudonné–Manin decomposition, (T0)X
decomposes in F-Isoc(X) as

(T0)X = (T ′0 )X ⊕ (O⊕mX , id)
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where (O⊕mX , id) is the maximal unit-root subobject of (T0)X and m ≥ 0. As F0 is unit-root, it is
sent via the quotient (E0)X � (T0)X to a unit-root F -subisocrystal of (T0)X . By the assumption,
the image of (F0)X is non-zero, so that m has to be greater than 0. Thus (E0)X admits a surjective
morphism to (OX , id) in F-Isoc(X). Since DQp

is fully faithful, such a quotient comes from a

monomorphism (Qp/Zp)X,Qp
↪→ A[p∞]Qp

in the category of p-divisible groups with coefficients in

Qp. After multiplying by some element in Q×p , the map defines an injection (Qp/Zp)X ↪→ A[p∞] of
p-divisible groups over X. By Theorem 1.2.1, this implies that Trk/F(A) 6= 0. �

Proof of Theorem 4.1.1. Assume by contradiction that |A[p∞](kperf)| = ∞. By Corollary 4.2.4,
we have a quotient (F0)X � (OX , id) in F-Isoc(X). Forgetting the Frobenius structure we get a
quotient FX � OX in Isoc(X). Let FX � O⊕nX be the maximal trivial quotient of FX , where
n > 0. By maximality, the action of the absolute Galois group of Fq on FX preserves this quotient.
Therefore, the morphism FX � O⊕nX descends to a quotient F � T in Isoc(X0). Since the descent
datum defining T is the pullback of a descent datum over Spec(F), the convergent isocrystal T
is isomorphic to the pullback of a convergent isocrystal over Fq. Notice that every convergent

isocrystal over Spec(Fq) is trivial, so that T ' O⊕nX0
. Now, thanks to the fact that E†0 is semi-

simple, as explained in §4.2.2, we can use Corollary 3.2.1 and extend the quotient F � O⊕nX0
to a

quotient E � O⊕nX0
in Isoc(X0). By Proposition 4.3.1, this would imply that Trk/F(A) 6= 0, which

leads to a contradiction. �

Remark 4.3.2. The proofs of Theorem 2.3.3 and Proposition 3.1.1 rely on the known cases of
Deligne’s conjecture. In particular, they rely on the Langlands correspondence for lisse sheaves
proven in [Laf02] and the Langlands correspondence for overconvergent F -isocrystals proven in
[Abe18]. We want to point out that to prove Theorem 4.1.1 we do not need this theory. More

precisely, when E†0 is an overconvergent F -isocrystal which comes from geometry (cf. §1.4), Theorem
2.3.3 can be proven more directly, as explained in [D’Ad20a, Remark 4.2.13]. Even in the proof of

Proposition 3.1.1, if E†0 comes from geometry we do not need [ibid., Theorem 3.6.6]. This applies,
for example, to the overconvergent F -isocrystals appearing in §4. To summarize, in the proof of
Theorem 4.1.1, the main ingredients are: class field theory (see Remark 3.1.2), the theory of weights
for overconvergent F -isocrystals, and Kedlaya’s full faithfulness theorem.
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[LN59] S. Lang and A. Néron, Rational points of abelian varieties over function fields, Amer. J. Math. 81 (1959),

95–118.

[Laz17] C. Lazda, A note on effective descent for overconvergent isocrystals, arXiv:1706.05300 (2017), to appear

in J Number Theory.

[Lev68] M. Levin, On the Group of Rational Points on Elliptic Curves Over Function Fields, Amer. J. Math. 90

(1968), 456–462.

[Mil15] J. S. Milne, Algebraic Groups (v2.00), available at www.jmilne.org/math (2015).

[Ogu84] A. Ogus, F -isocrystals and de Rham cohomology II–Convergent isocrystals, Duke Math. J. 51 (1984),

765–850.

[Pál15] A. Pál, The p-adic monodromy group of abelian varieties over global function fields of characteristic p,

arXiv:1512.03587 (2015).
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