ℓ-adic, p-adic and geometric invariants in families of varieties Ph.D. Defense

Emiliano Ambrosi

École Polytechnique

18/06/2019

Invariants of varieties

- k field of characteristic $p \geq 0$;

Invariants of varieties

- k field of characteristic $p \geq 0$;
- Y smooth projective k-variety.

Invariants of varieties

- k field of characteristic $p \geq 0$;
- Y smooth projective k-variety.

Cubic surface

Invariants of varieties

Geometric invariants:

Invariants of varieties

Geometric invariants:

- Néron-Severi $N S(Y) \otimes \mathbb{Q}$;

Invariants of varieties

Geometric invariants:

- Néron-Severi NS $(Y) \otimes \mathbb{Q}$;
- Picard group $\operatorname{Pic}(Y) \otimes \mathbb{Q}$ (more generally Chow groups $\left.\mathrm{CH}^{\mathrm{i}}(Y) \otimes \mathbb{Q}\right)$;

Invariants of varieties

Geometric invariants:

- Néron-Severi NS $(Y) \otimes \mathbb{Q}$;
- Picard group $\operatorname{Pic}(Y) \otimes \mathbb{Q}$ (more generally Chow groups $\left.\mathrm{CH}^{\mathrm{i}}(Y) \otimes \mathbb{Q}\right)$;

Cohomological invariants:

Invariants of varieties

Geometric invariants:

- Néron-Severi NS $(Y) \otimes \mathbb{Q}$;
- Picard group $\operatorname{Pic}(Y) \otimes \mathbb{Q}$ (more generally Chow groups $\left.\mathrm{CH}^{\mathrm{i}}(Y) \otimes \mathbb{Q}\right)$;

Cohomological invariants:

- $k=\mathbb{C}$, singular cohomology $\mathrm{H}^{\mathrm{i}}(Y(\mathbb{C}), \mathbb{Q})$, with Hodge filtration;

Invariants of varieties

Geometric invariants:

- Néron-Severi NS $(Y) \otimes \mathbb{Q}$;
- Picard group $\operatorname{Pic}(Y) \otimes \mathbb{Q}$ (more generally Chow groups $\left.\mathrm{CH}^{\mathrm{i}}(Y) \otimes \mathbb{Q}\right)$;

Cohomological invariants:

- $k=\mathbb{C}$, singular cohomology $\mathrm{H}^{\mathrm{i}}(Y(\mathbb{C}), \mathbb{Q})$, with Hodge filtration;
- k arbitrary, $\ell \neq p$ prime, ℓ-adic étale cohomology $H^{i}\left(Y_{\bar{k}}, \mathbb{Q}_{\ell}\right)$, with action of $\operatorname{Gal}(\bar{k} \mid k):=\pi_{1}(k)$;

Invariants of varieties

Geometric invariants:

- Néron-Severi NS $(Y) \otimes \mathbb{Q}$;
- Picard group $\operatorname{Pic}(Y) \otimes \mathbb{Q}$ (more generally Chow groups $\left.\mathrm{CH}^{\mathrm{i}}(Y) \otimes \mathbb{Q}\right)$;

Cohomological invariants:

- $k=\mathbb{C}$, singular cohomology $\mathrm{H}^{\mathrm{i}}(Y(\mathbb{C}), \mathbb{Q})$, with Hodge filtration;
- k arbitrary, $\ell \neq p$ prime, ℓ-adic étale cohomology $H^{\mathrm{i}}\left(Y_{\bar{k}}, \mathbb{Q}_{\ell}\right)$, with action of $\operatorname{Gal}(\bar{k} \mid k):=\pi_{1}(k)$;
- k perfect and $p>0$, crystalline $\mathrm{H}_{c r y s}^{\mathrm{i}}(Y)$ and rigid $\mathrm{H}_{r i g}^{\mathrm{i}}(Y)$ cohomology, with action of Frobenius;

Invariants of varieties

Geometric invariants:

- Néron-Severi NS $(Y) \otimes \mathbb{Q}$;
- Picard group $\operatorname{Pic}(Y) \otimes \mathbb{Q}$ (more generally Chow groups $\left.\mathrm{CH}^{\mathrm{i}}(Y) \otimes \mathbb{Q}\right)$;

Cohomological invariants:

- $k=\mathbb{C}$, singular cohomology $\mathrm{H}^{\mathrm{i}}(Y(\mathbb{C}), \mathbb{Q})$, with Hodge filtration;
- k arbitrary, $\ell \neq p$ prime, ℓ-adic étale cohomology $H^{\mathrm{i}}\left(Y_{\bar{k}}, \mathbb{Q}_{\ell}\right)$, with action of $\operatorname{Gal}(\bar{k} \mid k):=\pi_{1}(k)$;
- k perfect and $p>0$, crystalline $\mathrm{H}_{c r y s}^{\mathrm{i}}(Y)$ and rigid $\mathrm{H}_{\text {rig }}^{\mathrm{i}}(Y)$ cohomology, with action of Frobenius;

Cycle class map

$c_{Y}: \mathrm{CH}^{\mathrm{i}}(Y) \otimes \mathbb{Q} \rightarrow \mathrm{H}^{2 \mathrm{i}}(Y)$ relates geometry to cohomology.

Invariants of varieties

$\left\{Y_{X}\right\}_{x \in X} / k$ family of smooth projective varieties \leftrightarrow smooth projective morphism $f: Y \rightarrow X$.

Invariants of varieties

$\left\{Y_{x}\right\}_{x \in X} / k$ family of smooth projective varieties \leftrightarrow smooth projective morphism $f: Y \rightarrow X$.

Fibres

X smooth geometrically connected, x closed point,

Invariants of varieties

$\left\{Y_{X}\right\}_{x \in X} / k$ family of smooth projective varieties \leftrightarrow smooth projective morphism $f: Y \rightarrow X$.

Fibres

X smooth geometrically connected, x closed point,

Invariants of varieties

$\left\{Y_{x}\right\}_{x \in X} / k$ family of smooth projective varieties \leftrightarrow smooth projective morphism $f: Y \rightarrow X$.

Fibres

X smooth geometrically connected, x closed point, η generic point.

Invariants of varieties

$\left\{Y_{X}\right\}_{x \in X} / k$ family of smooth projective varieties \leftrightarrow smooth projective morphism $f: Y \rightarrow X$.

Fibres

X smooth geometrically connected, x closed point, η generic point.

Invariants of varieties

Question

How do the invariants of Y_{x} and $Y_{\bar{x}}$ vary with $x \in X$?

Invariants of varieties

Question

How do the invariants of Y_{x} and $Y_{\bar{x}}$ vary with $x \in X$?

- Dimensions of $\mathrm{H}^{\mathrm{i}}\left(Y_{x}(\mathbb{C}), \mathbb{Q}\right), \mathrm{H}^{\mathrm{i}}\left(Y_{\bar{x}}, \mathbb{Q}_{\ell}\right), \mathrm{H}_{\text {crys }}^{\mathrm{i}}\left(Y_{x}\right), \mathrm{H}_{\text {rig }}^{\mathrm{i}}\left(Y_{x}\right)$ independent of $x \in X$;

Invariants of varieties

Question

How do the invariants of Y_{x} and $Y_{\bar{x}}$ vary with $x \in X$?

- Dimensions of $\mathrm{H}^{\mathrm{i}}\left(Y_{x}(\mathbb{C}), \mathbb{Q}\right), \mathrm{H}^{\mathrm{i}}\left(Y_{\bar{x}}, \mathbb{Q}_{\ell}\right), \mathrm{H}_{c r y s}^{\mathrm{i}}\left(Y_{x}\right), \mathrm{H}_{r i g}^{\mathrm{i}}\left(Y_{X}\right)$ independent of $x \in X$;
- Extra structures (Hodge filtrations, Galois actions, Frobenius actions) can be very different!

Invariants of varieties

Question

How do the invariants of Y_{x} and $Y_{\bar{x}}$ vary with $x \in X$?

- Dimensions of $\mathrm{H}^{\mathrm{i}}\left(Y_{x}(\mathbb{C}), \mathbb{Q}\right), \mathrm{H}^{\mathrm{i}}\left(Y_{\bar{x}}, \mathbb{Q}_{\ell}\right), \mathrm{H}_{\text {crys }}^{\mathrm{i}}\left(Y_{x}\right), \mathrm{H}_{\text {rig }}^{\mathrm{i}}\left(Y_{x}\right)$ independent of $x \in X$;
- Extra structures (Hodge filtrations, Galois actions, Frobenius actions) can be very different!
- Also $\mathrm{NS}\left(Y_{X}\right) \otimes \mathbb{Q}, \operatorname{Pic}\left(Y_{X}\right) \otimes \mathbb{Q}, \mathrm{CH}^{\mathrm{i}}\left(Y_{X}\right) \otimes \mathbb{Q}$ vary.

NS-generic points

$$
\begin{array}{ccccc}
Y_{\bar{x}} \longrightarrow & Y & \longleftrightarrow & Y_{\bar{\eta}} \\
\downarrow & \square & f & \square & \downarrow \\
\overline{k(x)} & \bar{x} & X & \bar{\eta} & \frac{\downarrow}{k(\eta)}
\end{array}
$$

- Injective specialization morphism:

$$
s p_{\eta, x}: \mathrm{NS}\left(Y_{\bar{\eta}}\right) \otimes \mathbb{Q} \hookrightarrow \operatorname{NS}\left(Y_{\bar{x}}\right) \otimes \mathbb{Q} ;
$$

NS-generic points

$$
\begin{aligned}
& Y_{\bar{x}} \longrightarrow Y \longleftarrow Y_{\bar{\eta}}
\end{aligned}
$$

- Injective specialization morphism:

$$
s p_{\eta, x}: \mathrm{NS}\left(Y_{\bar{\eta}}\right) \otimes \mathbb{Q} \hookrightarrow \mathrm{NS}\left(Y_{\bar{x}}\right) \otimes \mathbb{Q} ;
$$

- Arithmetic variant:

$$
s p_{\eta, x}^{a r}: \operatorname{NS}\left(Y_{\eta}\right) \otimes \mathbb{Q} \hookrightarrow \operatorname{NS}\left(Y_{x}\right) \otimes \mathbb{Q} .
$$

NS-generic points

$$
\begin{gathered}
Y_{\bar{x}} \longrightarrow Y \longleftarrow Y_{\bar{\eta}} \\
\downarrow \\
\frac{\downarrow}{k(x)} \xrightarrow{\square} \stackrel{f}{\longrightarrow} \\
\hline
\end{gathered}
$$

- Injective specialization morphism:

$$
s p_{\eta, x}: \operatorname{NS}\left(Y_{\bar{\eta}}\right) \otimes \mathbb{Q} \hookrightarrow \operatorname{NS}\left(Y_{\bar{x}}\right) \otimes \mathbb{Q} ;
$$

- Arithmetic variant:

$$
s p_{\eta, x}^{a r}: \operatorname{NS}\left(Y_{\eta}\right) \otimes \mathbb{Q} \hookrightarrow \mathrm{NS}\left(Y_{x}\right) \otimes \mathbb{Q} .
$$

Definition

x NS-generic (resp. arithmetically NS-generic) if $s p_{\eta, x}\left(\right.$ resp. $s p_{\eta, x}^{a r}$) isomorphism.

NS-generic points

Questions

- Can we describe the set of (arithmetically) NS-generic closed points?

NS-generic points

Questions

- Can we describe the set of (arithmetically) NS-generic closed points?
- Is the set of (arithmetically) NS-generic closed points not empty?

NS-generic points

Questions

- Can we describe the set of (arithmetically) NS-generic closed points?
- Is the set of (arithmetically) NS-generic closed points not empty?

The answers depend on the arithmetic of k.

NS-generic points

Example 1

- $Y \rightarrow X$ not isotrivial family of elliptic curves, $f: Y{ }_{X} Y \rightarrow X$

NS-generic points

Example 1

- $Y \rightarrow X$ not isotrivial family of elliptic curves, $f: Y \times_{X} Y \rightarrow X$
- x is NS-generic $\Leftrightarrow Y_{\bar{X}}$ has not complex multiplication.

NS-generic points

Example 1

- $Y \rightarrow X$ not isotrivial family of elliptic curves, $f: Y \times_{X} Y \rightarrow X$
- x is NS-generic $\Leftrightarrow Y_{\bar{X}}$ has not complex multiplication.
- $k=\mathbb{F}_{q}$ finite field $\Rightarrow Y_{\bar{x}}$ has always complex multiplication.

NS-generic points

Example 2

- $Y \subseteq \mathbb{P}^{n}$ of dimension ≥ 3;

NS-generic points

Example 2

- $Y \subseteq \mathbb{P}^{n}$ of dimension ≥ 3;
- $\left\{Y_{X}\right\}_{x \in X}$ nice pencil hyperplane sections $Y_{X} \subseteq Y$;

NS-generic points

Example 2

- $Y \subseteq \mathbb{P}^{n}$ of dimension ≥ 3;
- $\left\{Y_{X}\right\}_{x \in X}$ nice pencil hyperplane sections $Y_{X} \subseteq Y$;
- x arithmetically NS-generic $\Leftrightarrow \mathrm{NS}\left(Y_{x}\right) \otimes \mathbb{Q} \simeq \mathrm{NS}(Y) \otimes \mathbb{Q}$.

NS-generic points

Example 2

- $Y \subseteq \mathbb{P}^{n}$ of dimension ≥ 3;
- $\left\{Y_{X}\right\}_{x \in X}$ nice pencil hyperplane sections $Y_{X} \subseteq Y$;
- x arithmetically NS-generic $\Leftrightarrow \mathrm{NS}\left(Y_{x}\right) \otimes \mathbb{Q} \simeq \mathrm{NS}(Y) \otimes \mathbb{Q}$.

Example 2.0

- Veronese's embedding of degree 2

$$
\begin{aligned}
\mathbb{P}_{k}^{3} & \rightarrow \mathbb{P}_{k}^{9} \\
{[x: y: z: w] } & \mapsto\left[x^{2}: y^{2}: z^{2}: w^{2}: x y: x z: x w: y z: y w: z w\right] ;
\end{aligned}
$$

NS-generic points

Example 2

- $Y \subseteq \mathbb{P}^{n}$ of dimension ≥ 3;
- $\left\{Y_{X}\right\}_{x \in X}$ nice pencil hyperplane sections $Y_{X} \subseteq Y$;
- x arithmetically NS-generic $\Leftrightarrow \mathrm{NS}\left(Y_{x}\right) \otimes \mathbb{Q} \simeq \mathrm{NS}(Y) \otimes \mathbb{Q}$.

Example 2.0

- Veronese's embedding of degree 2

$$
\begin{aligned}
\mathbb{P}_{k}^{3} & \rightarrow \mathbb{P}_{k}^{9} \\
{[x: y: z: w] } & \mapsto\left[x^{2}: y^{2}: z^{2}: w^{2}: x y: x z: x w: y z: y w: z w\right] ;
\end{aligned}
$$

- Hyperplane section $Y_{X} \leftrightarrow$ Quadric $Q_{x} \subseteq \mathbb{P}^{3}$;

NS-generic points

Example 2

- $Y \subseteq \mathbb{P}^{n}$ of dimension ≥ 3;
- $\left\{Y_{X}\right\}_{x \in X}$ nice pencil hyperplane sections $Y_{X} \subseteq Y$;
- x arithmetically NS-generic $\Leftrightarrow \mathrm{NS}\left(Y_{X}\right) \otimes \mathbb{Q} \simeq \mathrm{NS}(Y) \otimes \mathbb{Q}$.

Example 2.0

- Veronese's embedding of degree 2

$$
\begin{aligned}
\mathbb{P}_{k}^{3} & \rightarrow \mathbb{P}_{k}^{9} \\
{[x: y: z: w] } & \mapsto\left[x^{2}: y^{2}: z^{2}: w^{2}: x y: x z: x w: y z: y w: z w\right] ;
\end{aligned}
$$

- Hyperplane section $Y_{x} \leftrightarrow$ Quadric $Q_{x} \subseteq \mathbb{P}^{3}$;
- $k=\bar{k} \Rightarrow Q_{x} \simeq \mathbb{P}^{1} \times \mathbb{P}^{1}$,
$\operatorname{NS}\left(Q_{x}\right) \otimes \mathbb{Q} \simeq \mathbb{Q} \times \mathbb{Q}, \quad$ while $\quad \operatorname{NS}\left(\mathbb{P}^{3}\right) \otimes \mathbb{Q} \simeq \mathbb{Q}$.

NS-generic points

Theorem 1 (A.)

$p>0, k$ infinite finitely generated (i.e. $\left.k=\mathbb{F}_{p}\left(T_{1}, \ldots, T_{n}\right)\right) \Rightarrow$

NS-generic points

Theorem 1 (A.)

$p>0, k$ infinite finitely generated (i.e. $\left.k=\mathbb{F}_{p}\left(T_{1}, \ldots, T_{n}\right)\right) \Rightarrow$
(1) \exists infinitely many arithmetically NS-generic points of (higher enough) bounded degree;

NS-generic points

Theorem 1 (A.)

$p>0, k$ infinite finitely generated (i.e. $\left.k=\mathbb{F}_{p}\left(T_{1}, \ldots, T_{n}\right)\right) \Rightarrow$
(1) \exists infinitely many arithmetically NS-generic points of (higher enough) bounded degree;
(2) X curve \Rightarrow all but finitely many $x \in X(k)$ NS-generic.

NS-generic points

Theorem 1 (A.)

$p>0, k$ infinite finitely generated (i.e. $\left.k=\mathbb{F}_{p}\left(T_{1}, \ldots, T_{n}\right)\right) \Rightarrow$
(1) \exists infinitely many arithmetically NS-generic points of (higher enough) bounded degree;
(2) X curve \Rightarrow all but finitely many $x \in X(k)$ NS-generic.

Remark ($\mathrm{p}=0$)

If $p=0$:
(1) is due to André;
(2) is due to Cadoret-Tamagawa.

Tate conjecture

k finitely generated, $\ell \neq p$.

Tate conjecture

k finitely generated, $\ell \neq p$.
Cycles class map

$$
c_{Y}: \mathrm{NS}(Y) \otimes \mathbb{Q}_{\ell} \hookrightarrow \mathrm{H}^{2}\left(Y_{\bar{k}}, \mathbb{Q}_{\ell}(1)\right)
$$

contained in the fixed points

$$
H^{2}\left(Y_{\bar{k}}, \mathbb{Q}_{\ell}(1)\right)^{\pi_{1}(k)} ;
$$

Tate conjecture

k finitely generated, $\ell \neq p$.
Cycles class map

$$
\begin{gathered}
c_{Y}: \mathrm{NS}(Y) \otimes \mathbb{Q}_{\ell} \hookrightarrow \mathrm{H}^{2}\left(Y_{\bar{k}}, \mathbb{Q}_{\ell}(1)\right) \\
\text { contained in the fixed points }
\end{gathered}
$$

$$
\mathrm{H}^{2}\left(Y_{\bar{k}}, \mathbb{Q}_{\ell}(1)\right)^{\pi_{1}(k)}
$$

Conjecture (Tate)

$$
c_{Y}: \mathrm{NS}(Y) \otimes \mathbb{Q}_{\ell} \xrightarrow{\simeq} \mathrm{H}^{2}\left(Y_{\bar{k}}, \mathbb{Q}_{\ell}(1)\right)^{\pi_{1}(k)} .
$$

Galois generic points

- $\left\{\mathrm{H}^{2}\left(Y_{\bar{X}}, \mathbb{Q}_{\ell}(1)\right)\right\}_{x \in X}$-adic local system,

Galois generic points

- $\left\{\mathrm{H}^{2}\left(Y_{\bar{x}}, \mathbb{Q}_{\ell}(1)\right)\right\}_{x \in X} \ell$-adic local system,
- e.g. representation of étale fundamental group $\pi_{1}(X)$.

Galois generic points

- $\left\{\mathrm{H}^{2}\left(Y_{\bar{X}}, \mathbb{Q}_{\ell}(1)\right)\right\}_{x \in X}$-adic local system,
- e.g. representation of étale fundamental group $\pi_{1}(X)$.

$$
\pi_{1}(k(\eta)) \xrightarrow{\rho_{\ell, \eta}} G L\left(\mathrm{H}^{2}\left(Y_{\bar{\eta}}, \mathbb{Q}_{\ell}(1)\right)\right)
$$

$$
\pi_{1}(k(x)) \xrightarrow{\rho_{\ell, x}} G L\left(\mathrm{H}^{2}\left(Y_{\bar{x}}, \mathbb{Q}_{\ell}(1)\right)\right)
$$

Galois generic points

- $\left\{\mathrm{H}^{2}\left(Y_{\bar{X}}, \mathbb{Q}_{\ell}(1)\right)\right\}_{x \in X}$-adic local system,
- e.g. representation of étale fundamental group $\pi_{1}(X)$.
$\pi_{1}(k(\eta)) \xrightarrow{\rho_{\ell, \eta}} G L\left(\mathrm{H}^{2}\left(Y_{\bar{\eta}}, \mathbb{Q}_{\ell}(1)\right)\right)$

$\pi_{1}(X)$
\uparrow

$$
\pi_{1}(k(x)) \xrightarrow{\rho_{\ell, x}} G L\left(\mathrm{H}^{2}\left(Y_{\bar{X}}, \mathbb{Q}_{\ell}(1)\right)\right)
$$

Galois generic points

- $\left\{\mathrm{H}^{2}\left(Y_{\bar{X}}, \mathbb{Q}_{\ell}(1)\right)\right\}_{x \in X}$-adic local system,
- e.g. representation of étale fundamental group $\pi_{1}(X)$.

Galois generic points

- $\left\{\mathrm{H}^{2}\left(Y_{\bar{X}}, \mathbb{Q}_{\ell}(1)\right)\right\}_{x \in X}$-adic local system,
- e.g. representation of étale fundamental group $\pi_{1}(X)$.

Galois generic points

- $\left\{\mathrm{H}^{2}\left(Y_{\bar{x}}, \mathbb{Q}_{\ell}(1)\right)\right\}_{x \in X}$ l-adic local system,
- e.g. representation of étale fundamental group $\pi_{1}(X)$.

Inclusion of ℓ-adic Lie groups

$$
\rho_{\ell}\left(\pi_{1}(k(x))\right)=: \Pi_{\ell, x} \subseteq \Pi_{\ell}:=\rho_{\ell}\left(\pi_{1}(X)\right)
$$

Galois generic points

Definition

x Galois generic (resp. strictly Galois generic) if $\left[\Pi_{\ell}: \Pi_{\ell, x}\right]<+\infty$ (resp. $\Pi_{\ell, x}=\Pi_{\ell}$)

Galois generic points

Definition

x Galois generic (resp. strictly Galois generic) if $\left[\Pi_{\ell}: \Pi_{\ell, x}\right]<+\infty$ (resp. $\Pi_{\ell, x}=\Pi_{\ell}$)

Proposition (Serre)

k infinite finitely generated $\Rightarrow \exists$ infinitely many strictly Galois generic points of (higher enough) bounded degree.

Galois generic points

Definition

x Galois generic (resp. strictly Galois generic) if $\left[\Pi_{\ell}: \Pi_{\ell, x}\right]<+\infty$ (resp. $\Pi_{\ell, x}=\Pi_{\ell}$)

Proposition (Serre)

k infinite finitely generated $\Rightarrow \exists$ infinitely many strictly Galois generic points of (higher enough) bounded degree.

Theorem 2 (A.)
$p>0, k$ finitely generated, X curve \Rightarrow all but finitely many $x \in X(k)$ Galois generic.

Galois generic points

Definition

x Galois generic (resp. strictly Galois generic) if $\left[\Pi_{\ell}: \Pi_{\ell, x}\right]<+\infty$ (resp. $\Pi_{\ell, x}=\Pi_{\ell}$)

Proposition (Serre)

k infinite finitely generated $\Rightarrow \exists$ infinitely many strictly Galois generic points of (higher enough) bounded degree.

Theorem 2 (A.)
$p>0, k$ finitely generated, X curve \Rightarrow all but finitely many $x \in X(k)$ Galois generic.

Remark ($\mathrm{p}=0$)
If $p=0$ Theorem 2 is due to Cadoret-Tamagawa.

Proof of Theorem 2

Anabelian dictionary

- $U \subseteq \Pi_{\ell}$ open subgroup \leftrightarrow connected étale cover $X_{U} \rightarrow X$

Proof of Theorem 2

Anabelian dictionary

- $U \subseteq \Pi_{\ell}$ open subgroup \leftrightarrow connected étale cover $X_{U} \rightarrow X$
- $\Pi_{\ell, x} \subseteq U \Leftrightarrow k(x) \xrightarrow{X} X$ lifts to a $k(x)$-rational point of X_{U}.

Proof of Theorem 2

Anabelian dictionary

- $U \subseteq \Pi_{\ell}$ open subgroup \leftrightarrow connected étale cover $X_{U} \rightarrow X$
- $\Pi_{\ell, x} \subseteq U \Leftrightarrow k(x) \xrightarrow{X} X$ lifts to a $k(x)$-rational point of X_{U}.

Construction (Cadoret-Tamagawa)

\exists projective system $h_{n}: X_{n} \rightarrow X$ of étale covers such that Theorem 2 holds

$$
\Leftrightarrow \quad \operatorname{Im}\left(\lim _{n}\left(X_{n}(k)\right) \rightarrow X(k)\right) \text { finite }
$$

Proof of Theorem 2

Mordell conjecture (Samuel-Voloch)
Genus $g_{x_{n}}$ of $X_{n} \gg 0 \Rightarrow X_{n}(k)$ finite.

Proof of Theorem 2

Mordell conjecture (Samuel-Voloch)

Genus $g_{x_{n}}$ of $X_{n} \gg 0 \Rightarrow X_{n}(k)$ finite.
Key Proposition (A.)

$$
\lim _{n \mapsto+\infty} g_{x_{n}}=+\infty
$$

Proof of Theorem 2

Mordell conjecture (Samuel-Voloch)

Genus $g_{x_{n}}$ of $X_{n} \gg 0 \Rightarrow X_{n}(k)$ finite.

Key Proposition (A.)

$$
\lim _{n \mapsto+\infty} g x_{n}=+\infty
$$

Main ingredients:

- Riemann-Hurwitz formula;

Proof of Theorem 2

Mordell conjecture (Samuel-Voloch)

Genus $g_{x_{n}}$ of $X_{n} \gg 0 \Rightarrow X_{n}(k)$ finite.

Key Proposition (A.)

$$
\lim _{n \mapsto+\infty} g x_{n}=+\infty
$$

Main ingredients:

- Riemann-Hurwitz formula;
- Study of wild ramification;

Proof of Theorem 2

Mordell conjecture (Samuel-Voloch)

Genus $g_{x_{n}}$ of $X_{n} \gg 0 \Rightarrow X_{n}(k)$ finite.

Key Proposition (A.)

$$
\lim _{n \mapsto+\infty} g_{x_{n}}=+\infty
$$

Main ingredients:

- Riemann-Hurwitz formula;
- Study of wild ramification;
- ℓ-adic Lie groups theory.

Galois generic vs NS generic

Tate conjecture predicts:
(Strictly) Galois generic points are (arithmetically) NS-generic.

Galois generic vs NS generic

Tate conjecture predicts:

(Strictly) Galois generic points are (arithmetically) NS-generic.

```
Theorem 3 (A.)
p>0,k finitely generated }=>\mathrm{ (strictly) Galois generic are (arithmetically) NS-generic.
```


Galois generic vs NS generic

Tate conjecture predicts:

(Strictly) Galois generic points are (arithmetically) NS-generic.

Theorem 3 (A.)

$p>0, k$ finitely generated \Rightarrow (strictly) Galois generic are (arithmetically) NS-generic.

Remark ($\mathrm{p}=0$)

If $p=0$, Theorem 3 due to André. Main ingredients:

Galois generic vs NS generic

Tate conjecture predicts:

(Strictly) Galois generic points are (arithmetically) NS-generic.

Theorem 3 (A.)

$p>0, k$ finitely generated \Rightarrow (strictly) Galois generic are (arithmetically) NS-generic.

Remark ($\mathrm{p}=0$)

If $p=0$, Theorem 3 due to André. Main ingredients:
(1) Hodge theory (via the Lefschetz $(1,1)$ Theorem), to link algebraic cycles and cohomology;

Galois generic vs NS generic

Tate conjecture predicts:

(Strictly) Galois generic points are (arithmetically) NS-generic.

Theorem 3 (A.)

$p>0, k$ finitely generated \Rightarrow (strictly) Galois generic are (arithmetically) NS-generic.

Remark ($\mathrm{p}=0$)

If $p=0$, Theorem 3 due to André. Main ingredients:
(1) Hodge theory (via the Lefschetz $(1,1)$ Theorem), to link algebraic cycles and cohomology;
(2) Comparison étale-singular sites, to link Hodge theory to ρ_{ℓ}.

Galois generic vs NS generic

Replacements

(1) replaced with the crystalline variational Tate conjecture.

Galois generic vs NS generic

Replacements

(1) replaced with the crystalline variational Tate conjecture.
(2) replaced with Tannakian independence techniques.

Galois generic vs NS generic

To simplify
$k=\mathbb{F}_{q}$ and $x \in X(k)$ strictly Galois generic.

Galois generic vs NS generic

To simplify

$k=\mathbb{F}_{q}$ and $x \in X(k)$ strictly Galois generic.
$\operatorname{Pic}(Y) \otimes \mathbb{Q} \longrightarrow \operatorname{NS}\left(Y_{x}\right) \otimes \mathbb{Q}$
$\mathrm{H}^{2}\left(Y_{\bar{k}}, \mathbb{Q}_{\ell}(1)\right) \longrightarrow \mathrm{H}^{2}\left(Y_{\bar{X}}, \mathbb{Q}_{\ell}(1)\right)$
$H^{0}\left(X_{\bar{k}}, R^{2} f_{*} \mathbb{Q}_{\ell}(1)\right)$

Galois generic vs NS generic

To simplify

$k=\mathbb{F}_{q}$ and $x \in X(k)$ strictly Galois generic.

Galois generic assumption \Rightarrow
$H^{0}\left(X_{\bar{k}}, R^{2} f_{*} \mathbb{Q}_{\ell}(1)\right)^{\pi_{1}(k)} \simeq \mathrm{H}^{2}\left(Y_{\bar{X}}, \mathbb{Q}_{\ell}(1)\right)^{\pi_{1}(k)}$

Galois generic vs NS generic

To simplify

$k=\mathbb{F}_{q}$ and $x \in X(k)$ strictly Galois generic, $K=\operatorname{Frac}(W(k)), F$ (power of) absolute Frobenius.

$$
\begin{aligned}
& \operatorname{Pic}(Y) \otimes \mathbb{Q} \longrightarrow \mathrm{NS}\left(Y_{X}\right) \otimes \mathbb{Q} \\
& \downarrow \quad \downarrow \\
& \mathrm{H}_{\text {crys }}^{2}(Y)(1) \longrightarrow \mathrm{H}_{\text {crys }}^{2}\left(Y_{X}\right)(1) \\
& \downarrow \\
& H^{0}\left(X, R^{2} f_{\text {crys }, *} \theta_{Y / K}(1)\right)
\end{aligned}
$$

Galois generic vs NS generic

To simplify

$k=\mathbb{F}_{q}$ and $x \in X(k)$ strictly Galois generic, $K=\operatorname{Frac}(W(k)), F$ (power of) absolute Frobenius.

Crystalline Variational Tate conjecture (Morrow):
$\operatorname{Im}\left(\operatorname{Pic}(Y) \otimes \mathbb{Q} \rightarrow \mathrm{NS}\left(Y_{X}\right) \otimes \mathbb{Q}\right)=\mathrm{H}^{0}\left(X, R^{2} f_{\text {crys }, *} \theta_{Y / K}(1)\right)^{F} \cap \mathrm{NS}\left(Y_{X}\right) \otimes \mathbb{Q}$

Galois generic vs NS generic

Key Proposition (A.)
x strictly Galois generic $\Rightarrow \mathrm{H}^{0}\left(X, R^{2} f_{\text {crys,* }} \mathcal{O}_{Y / K}(1)\right)^{F} \simeq \mathrm{H}_{\text {crys }}^{2}\left(Y_{X}\right)(1)^{F}$

Galois generic vs NS generic

Key Proposition (A.)

x strictly Galois generic $\Rightarrow \mathrm{H}^{0}\left(X, R^{2} f_{\text {crys }, *} \mathcal{O}_{Y / K}(1)\right)^{F} \simeq \mathrm{H}_{\text {crys }}^{2}\left(Y_{X}\right)(1)^{F}$
$R^{2} f_{\text {crys }, *} \Theta_{Y / K}(1)$ is an F-isocrystal;

Galois generic vs NS generic

Key Proposition (A.)

x strictly Galois generic $\Rightarrow \mathrm{H}^{0}\left(X, R^{2} f_{\text {crys,** }} \mathcal{O}_{Y / K}(1)\right)^{F} \simeq \mathrm{H}_{\text {crys }}^{2}\left(Y_{X}\right)(1)^{F}$

$$
R^{2} f_{\text {crys, },} \mathcal{O}_{Y / K}(1) \text { is an F-isocrystal; }
$$

Main problem:

Category \mathbf{F}-Isoc (X) of F -isocrystals has a pathological behaviour:

Galois generic vs NS generic

Key Proposition (A.)

x strictly Galois generic $\Rightarrow \mathrm{H}^{0}\left(X, R^{2} f_{\text {crys,* }} \mathcal{O}_{Y / K}(1)\right)^{F} \simeq \mathrm{H}_{\text {crys }}^{2}\left(Y_{X}\right)(1)^{F}$

$$
R^{2} f_{\text {crys }, *} \Theta_{Y / K}(1) \text { is an F-isocrystal; }
$$

Main problem:

Category F-Isoc (X) of F -isocrystals has a pathological behaviour:
(1) Different behaviour from ℓ-adic representations;

Galois generic vs NS generic

Key Proposition (A.)

x strictly Galois generic $\Rightarrow \mathrm{H}^{0}\left(X, R^{2} f_{\text {crys,* }} \mathcal{O}_{Y / K}(1)\right)^{F} \simeq \mathrm{H}_{\text {crys }}^{2}\left(Y_{X}\right)(1)^{F}$

$$
R^{2} f_{\text {crys, },} \mathcal{O}_{Y / K}(1) \text { is an F-isocrystal; }
$$

Main problem:

Category F-Isoc (X) of F -isocrystals has a pathological behaviour:
(1) Different behaviour from ℓ-adic representations;
(2) Infinite dimensional cohomology if X not proper.

Different behaviour from ℓ-adic representations

- $f: Y \rightarrow X$ non isotrivial family of elliptic curves;

Different behaviour from ℓ-adic representations

- $f: Y \rightarrow X$ non isotrivial family of elliptic curves;
- $Z \subseteq X$ closed supersingular locus (assumed not empty), $U=X-Z$;

Different behaviour from ℓ-adic representations

- $f: Y \rightarrow X$ non isotrivial family of elliptic curves;
- $Z \subseteq X$ closed supersingular locus (assumed not empty),
$U=X-Z$;
- $\mathcal{E}:=R^{1} f_{\text {crys }, *} \mathcal{O}_{Y / K}$ is irreducible;

Different behaviour from ℓ-adic representations

- $f: Y \rightarrow X$ non isotrivial family of elliptic curves;
- $Z \subseteq X$ closed supersingular locus (assumed not empty),
$U=X-Z$;
- $\mathcal{E}:=R^{1} f_{c r y s, *} \mathcal{O}_{Y / K}$ is irreducible;
- Its restriction \mathcal{E}_{U} fits in a exact sequence

$$
0 \rightarrow \mathcal{E}_{U}^{\text {ét }} \rightarrow \mathcal{E}_{U} \rightarrow \mathcal{E}_{U}^{0} \rightarrow 0 ;
$$

coming from the decomposition of the p-divisible group $Y_{\eta}\left[p^{\infty}\right]$.

Different behaviour from ℓ-adic representations

- $f: Y \rightarrow X$ non isotrivial family of elliptic curves;
- $Z \subseteq X$ closed supersingular locus (assumed not empty), $U=X-Z$;
- $\mathcal{E}:=R^{1} f_{c r y s, *} \mathcal{O}_{Y / K}$ is irreducible;
- Its restriction \mathcal{E}_{U} fits in a exact sequence

$$
0 \rightarrow \mathcal{E}_{U}^{\text {ét }} \rightarrow \mathcal{E}_{U} \rightarrow \mathcal{E}_{U}^{0} \rightarrow 0 ;
$$

coming from the decomposition of the p -divisible group $Y_{\eta}\left[p^{\infty}\right]$.

Pathology (1):

- Restriction to an open of an irreducible is not irreducible;

Different behaviour from ℓ-adic representations

- $f: Y \rightarrow X$ non isotrivial family of elliptic curves;
- $Z \subseteq X$ closed supersingular locus (assumed not empty), $U=X-Z$;
- $\mathcal{E}:=R^{1} f_{c r y s, *} \mathcal{O}_{Y / K}$ is irreducible;
- Its restriction \mathcal{E}_{U} fits in a exact sequence

$$
0 \rightarrow \mathcal{E}_{U}^{\text {ét }} \rightarrow \mathcal{E}_{U} \rightarrow \mathcal{E}_{U}^{0} \rightarrow 0 ;
$$

coming from the decomposition of the p -divisible group $Y_{\eta}\left[p^{\infty}\right]$.

Pathology (1):

- Restriction to an open of an irreducible is not irreducible;
- $R^{1} f_{U, *} \mathbb{Q}_{\ell}$ is irreducible, while \mathcal{E}_{U} is not.

Infinite dimensional cohomology

If $X:=\mathbb{A}_{\mathbb{F}_{q}}^{1}$ then $\mathrm{H}_{\text {crys }}^{1}(X)$ is of infinite dimension.

Infinite dimensional cohomology

If $X:=\mathbb{A}_{\mathbb{F}_{q}}^{1}$ then $\mathrm{H}_{\text {crys }}^{1}(X)$ is of infinite dimension.

$$
K\{T\}:=\left\{\sum_{n \geq 0} a_{n} T^{n} \text { such that } \lim _{n \rightarrow+\infty}\left|a_{n}\right| \rightarrow 0\right\}
$$

Infinite dimensional cohomology

If $X:=\mathbb{A}_{\mathbb{F}_{q}}^{1}$ then $\mathrm{H}_{\text {crys }}^{1}(X)$ is of infinite dimension.

$$
K\{T\}:=\left\{\sum_{n \geq 0} a_{n} T^{n} \text { such that } \lim _{n \rightarrow+\infty}\left|a_{n}\right| \rightarrow 0\right\}
$$

$K\{T\}=\{$ convergent functions of the analytic closed disc $\}$

Infinite dimensional cohomology

If $X:=\mathbb{A}_{\mathbb{F}_{q}}^{1}$ then $\mathrm{H}_{\text {crys }}^{1}(X)$ is of infinite dimension.

$$
K\{T\}:=\left\{\sum_{n \geq 0} a_{n} T^{n} \text { such that } \lim _{n \rightarrow+\infty}\left|a_{n}\right| \rightarrow 0\right\}
$$

$K\{T\}=\{$ convergent functions of the analytic closed disc $\}$

$$
d: K\{T\} \rightarrow K\{T\} d T \quad \text { and } \quad H_{c r y s}^{1}(X) \simeq \operatorname{Coker}(d)
$$

Infinite dimensional cohomology

If $X:=\mathbb{A}_{\mathbb{F}_{q}}^{1}$ then $\mathrm{H}_{\text {crys }}^{1}(X)$ is of infinite dimension.

$$
K\{T\}:=\left\{\sum_{n \geq 0} a_{n} T^{n} \text { such that } \lim _{n \rightarrow+\infty}\left|a_{n}\right| \rightarrow 0\right\}
$$

$K\{T\}=\{$ convergent functions of the analytic closed disc $\}$

$$
\begin{gathered}
d: K\{T\} \rightarrow K\{T\} d T \quad \text { and } \quad H_{c r y s}^{1}(X) \simeq \operatorname{Coker}(d) \\
f=\sum_{n \geq 0} a_{n} T^{n} \quad \text { and so } \quad \int f=\sum_{n \geq 1} \frac{a_{n-1}}{n} T^{n}
\end{gathered}
$$

Infinite dimensional cohomology

Pathology (2):

$\lim _{n \rightarrow+\infty}\left|\frac{a_{n-1}}{n}\right|$ is in general different from zero, hence coker (d) is huge!

Infinite dimensional cohomology

Pathology (2):

$\lim _{n \rightarrow+\infty}\left|\frac{a_{n-1}}{n}\right|$ is in general different from zero, hence $\operatorname{coker}(d)$ is huge!

Solution (Monsky-Washnitzer, Berthelot)

Replace $K\{T\}$ with

$$
K\{T\}^{\dagger}:=\left\{\sum_{n \geq 0} a_{n} T^{n} \text { exists } c>1 \text { with } \lim _{n \rightarrow+\infty}\left|a_{n}\right| c^{n} \rightarrow 0\right\}
$$

Infinite dimensional cohomology

Pathology (2):

$\lim _{n \rightarrow+\infty}\left|\frac{a_{n-1}}{n}\right|$ is in general different from zero, hence $\operatorname{coker}(d)$ is huge!

Solution (Monsky-Washnitzer, Berthelot)

Replace $K\{T\}$ with

$$
K\{T\}^{\dagger}:=\left\{\sum_{n \geq 0} a_{n} T^{n} \text { exists } c>1 \text { with } \lim _{n \rightarrow+\infty}\left|a_{n}\right| c^{n} \rightarrow 0\right\}
$$

functions on some analytic open neighbourhood of the disc

Overconvergent F-isocrystals

- F-Isoc ${ }^{\dagger}(X)$ category overconvergent F-isocrystals;

Overconvergent F-isocrystals

- F-Isoc ${ }^{\dagger}(X)$ category overconvergent F-isocrystals;
- F-Isoc ${ }^{\dagger}(X)$ behaves like the category of ℓ-adic representations:

Overconvergent F-isocrystals

- F-Isoc ${ }^{\dagger}(X)$ category overconvergent F-isocrystals;
- F-Isoc ${ }^{\dagger}(X)$ behaves like the category of ℓ-adic representations:
- finite dimensional cohomology (Kedlaya);

Overconvergent F-isocrystals

- F-Isoc ${ }^{\dagger}(X)$ category overconvergent F-isocrystals;
- F-Isoc ${ }^{\dagger}(X)$ behaves like the category of ℓ-adic representations:
- finite dimensional cohomology (Kedlaya);
- theory of weights (Kedlaya, Abe-Caro);

Overconvergent F-isocrystals

- F-Isoc ${ }^{\dagger}(X)$ category overconvergent F-isocrystals;
- F-Isoc ${ }^{\dagger}(X)$ behaves like the category of ℓ-adic representations:
- finite dimensional cohomology (Kedlaya);
- theory of weights (Kedlaya, Abe-Caro);
- trace formula (Etesse, Le Stum);

Overconvergent F-isocrystals

- F-Isoc ${ }^{\dagger}(X)$ category overconvergent F-isocrystals;
- F-Isoc ${ }^{\dagger}(X)$ behaves like the category of ℓ-adic representations:
- finite dimensional cohomology (Kedlaya);
- theory of weights (Kedlaya, Abe-Caro);
- trace formula (Etesse, Le Stum);
- global monodromy theorem (Crew, Kedlaya).

From crystals to overconvergent F-isocrystals

Fact

- There is a functor Forg : \mathbf{F} - soc $^{\dagger}(X) \rightarrow \mathbf{F}-\mathbf{I s o c}(X)$ (Berthelot-Ogus);

From crystals to overconvergent F-isocrystals

Fact

- There is a functor Forg : \mathbf{F} - $\mathbf{I s o c}^{\dagger}(X) \rightarrow \mathbf{F}-\mathbf{I s o c}(X)$ (Berthelot-Ogus);
- Forg is fully faithful (Kedlaya);

From crystals to overconvergent F-isocrystals

Fact

- There is a functor Forg : $\mathbf{F}-$ Isoc $^{\dagger}(X) \rightarrow \mathbf{F}-\mathbf{I s o c}(X)$ (Berthelot-Ogus);
- Forg is fully faithful (Kedlaya);

Proposition (A.)

$f: Y \rightarrow X$ smooth and proper, $R^{\mathrm{i}} \mathrm{f}_{\text {crys }, *} O_{Y / K}$ is the image of a $R^{\mathrm{i}} f_{*} \mathrm{O}_{Y / K}^{\dagger} \in \mathbf{F}-\mathbf{I s o c}^{\dagger}(X)$.

From crystals to overconvergent F-isocrystals

Fact

- There is a functor Forg: F-Isoc ${ }^{\dagger}(X) \rightarrow$ F-Isoc (X) (Berthelot-Ogus);
- Forg is fully faithful (Kedlaya);

Proposition (A.)

$f: Y \rightarrow X$ smooth and proper, $R^{\mathrm{i}} f_{c r y s, *} O_{Y / K}$ is the image of a $R^{\mathrm{i}} f_{*} \mathrm{O}_{Y / K}^{\dagger} \in \mathbf{F}-\mathbf{I s o c}^{\dagger}(X)$.

Consequence:

Enough to compare $R^{2} f_{*} O_{Y / K}^{\dagger}(1)$ and $R^{2} f_{*} \mathbb{Q}_{\ell}(1)$.

From representations to overconvergent F-isocrystals

- $\operatorname{Isoc}^{\dagger}\left(\operatorname{Spec}\left(\mathbb{F}_{q}\right)\right) \simeq \operatorname{Vect}_{K} ;$

From representations to overconvergent F-isocrystals

- $\operatorname{Isoc}^{\dagger}\left(\operatorname{Spec}\left(\mathbb{F}_{q}\right)\right) \simeq \operatorname{Vect}_{K} ;$
- $x^{*}:$ F-Isoc ${ }^{\dagger}(X) \rightarrow$ Vect $_{K}$;

From representations to overconvergent F-isocrystals

- $\operatorname{Isoc}^{\dagger}\left(\operatorname{Spec}\left(\mathbb{F}_{q}\right)\right) \simeq \operatorname{Vect}_{K}$;
- $x^{*}:$ F-Isoc $^{\dagger}(X) \rightarrow$ Vect $_{K}$;
- F-Isoc ${ }^{\dagger}(X)$ neutral Tannakian category with fibre functor x^{*};

From representations to overconvergent F-isocrystals

- $\operatorname{Isoc}^{\dagger}\left(\operatorname{Spec}\left(\mathbb{F}_{q}\right)\right) \simeq \operatorname{Vect}_{K}$;

- F-Isoc ${ }^{\dagger}(X)$ neutral Tannakian category with fibre functor x^{*};
- $R^{2} f_{*} O_{Y / K}^{\dagger}(1):=\mathcal{E}$;

From representations to overconvergent F-isocrystals

- $\operatorname{Isoc}^{\dagger}\left(\operatorname{Spec}\left(\mathbb{F}_{q}\right)\right) \simeq \operatorname{Vect}_{K} ;$

- F-Isoc ${ }^{\dagger}(X)$ neutral Tannakian category with fibre functor x^{*};
- $R^{2} f_{*} O_{Y / K}^{\dagger}(1):=\mathcal{E}$;
- $<\mathcal{E}>$ smallest Tannakian category containing \mathcal{E};

From representations to overconvergent F-isocrystals

- $\operatorname{Isoc}^{\dagger}\left(\operatorname{Spec}\left(\mathbb{F}_{q}\right)\right) \simeq \operatorname{Vect}_{K} ;$
- $x^{*}: \mathrm{F}^{-1 \mathbf{I s o c}^{\dagger}}(X) \rightarrow$ Vect $_{K}$;
- F-Isoc ${ }^{\dagger}(X)$ neutral Tannakian category with fibre functor x^{*};
- $R^{2} f_{*} O_{Y / K}^{\dagger}(1):=\mathcal{E}$;
- $<\mathcal{E}>$ smallest Tannakian category containing \mathcal{E};
- Tannakian group $G(E)$;

From representations to overconvergent F-isocrystals

- $\operatorname{Isoc}^{\dagger}\left(\operatorname{Spec}\left(\mathbb{F}_{q}\right)\right) \simeq \operatorname{Vect}_{K} ;$
- $x^{*}:$ F-Isoc ${ }^{\dagger}(X) \rightarrow$ Vect $_{K}$;
- F-Isoc ${ }^{\dagger}(X)$ neutral Tannakian category with fibre functor x^{*};
- $R^{2} f_{*} O_{Y / K}^{\dagger}(1):=\mathcal{E}$;
- $<\mathcal{E}>$ smallest Tannakian category containing \mathcal{E};
- Tannakian group $G(E)$;
- Inclusion $G\left(x^{*} \mathcal{E}\right) \subseteq G(\mathcal{E})$;

From representations to overconvergent F-isocrystals

- $\operatorname{Isoc}^{\dagger}\left(\operatorname{Spec}\left(\mathbb{F}_{q}\right)\right) \simeq \operatorname{Vect}_{K} ;$
- $x^{*}:$ F-Isoc ${ }^{\dagger}(X) \rightarrow$ Vect $_{K}$;
- F-Isoc ${ }^{\dagger}(X)$ neutral Tannakian category with fibre functor x^{*};
- $R^{2} f_{*} O_{Y / K}^{\dagger}(1):=\varepsilon$;
- $<\mathcal{E}>$ smallest Tannakian category containing \mathcal{E};
- Tannakian group $G(E)$;
- Inclusion $G\left(x^{*} \mathcal{E}\right) \subseteq G(\mathcal{E})$;
- Enough to show: $G\left(x^{*} \mathcal{E}\right)=G(\varepsilon)$.

Independence

- $\mathcal{F}:=R^{2} f_{*} \mathbb{Q}_{\ell}(1)$;

Independence

- $\mathcal{F}:=R^{2} f_{*} \mathbb{Q}_{\ell}(1)$;
- $\langle\mathcal{F}>$ Tannakian category with Tannakian group $G(\mathcal{F})$.

Independence

- $\mathcal{F}:=R^{2} f_{*} \mathbb{Q}_{\ell}(1)$;
- $<\mathcal{F}>$ Tannakian category with Tannakian group $G(\mathcal{F})$.
- $G(\mathcal{F})=\bar{\Pi}_{\ell}^{Z a r}, G\left(x^{*} \mathcal{F}\right)=\bar{\Pi}_{\ell, x}^{Z a r}$.

Independence

- $\mathcal{F}:=R^{2} f_{*} \mathbb{Q}_{\ell}(1)$;
- $<\mathcal{F}>$ Tannakian category with Tannakian group $G(\mathcal{F})$.
- $G(\mathcal{F})=\bar{\Pi}_{\ell}^{Z a r}, G\left(x^{*} \mathcal{F}\right)=\bar{\Pi}_{\ell, x}^{Z a r}$.
- Galois generic assumption $\Rightarrow G\left(x^{*} \mathcal{F}\right)=G(\mathcal{F})$.

Independence

- $\mathcal{F}:=R^{2} f_{*} \mathbb{Q}_{\ell}(1)$;
- $<\mathcal{F}>$ Tannakian category with Tannakian group $G(\mathcal{F})$.
- $G(\mathcal{F})=\bar{\Pi}_{\ell}^{Z a r}, G\left(x^{*} \mathcal{F}\right)=\bar{\Pi}_{\ell, x}^{Z a r}$.
- Galois generic assumption $\Rightarrow G\left(x^{*} \mathcal{F}\right)=G(\mathcal{F})$.

Proposition

$$
G\left(x^{*} \mathcal{F}\right)=G(\mathcal{F}) \text { if and only if } G\left(x^{*} \mathcal{E}\right)=G(\mathcal{E})
$$

Summary

To summarize:

Summary

To summarize:

Two categories of p-adic local systems:

Summary

To summarize:

Two categories of p-adic local systems:
(1) Overconvergent F-isocrystals:

Summary

To summarize:

Two categories of p-adic local systems:
(1) Overconvergent F-isocrystals:

- Nice behaviour;

Summary

To summarize:

Two categories of p-adic local systems:
(1) Overconvergent F-isocrystals:

- Nice behaviour;
- Comparable with the category of ℓ-adic local systems.

Summary

To summarize:

Two categories of p-adic local systems:
(1) Overconvergent F-isocrystals:

- Nice behaviour;
- Comparable with the category of ℓ-adic local systems.
(2) F-isocrystals:

Summary

To summarize:

Two categories of p-adic local systems:
(1) Overconvergent F-isocrystals:

- Nice behaviour;
- Comparable with the category of ℓ-adic local systems.
(2) F-isocrystals:
- Pathological behaviour;

Summary

To summarize:

Two categories of p-adic local systems:
(1) Overconvergent F-isocrystals:

- Nice behaviour;
- Comparable with the category of ℓ-adic local systems.
(2) F-isocrystals:
- Pathological behaviour;
- Control finer p-adic and geometric information.

Summary

To summarize:

Two categories of p-adic local systems:
(1) Overconvergent F-isocrystals:

- Nice behaviour;
- Comparable with the category of ℓ-adic local systems.
(2) F-isocrystals:
- Pathological behaviour;
- Control finer p-adic and geometric information.

Idea:

- Compare F-Isoc ${ }^{\dagger}(X)$ and \mathbf{F}-Isoc (X) to exploit the nice behaviour of $\mathrm{F}^{-\mathrm{Isoc}}{ }^{\dagger}(X)$;

Summary

To summarize:

Two categories of p-adic local systems:
(1) Overconvergent F-isocrystals:

- Nice behaviour;
- Comparable with the category of ℓ-adic local systems.
(2) F-isocrystals:
- Pathological behaviour;
- Control finer p-adic and geometric information.

Idea:

- Compare $\mathbf{F}^{-I s o c}{ }^{\dagger}(X)$ and \mathbf{F}-Isoc (X) to exploit the nice behaviour of $\mathrm{F}^{-\mathrm{Is} \mathbf{s e c}^{\dagger}}(X)$;
- Use F-Isoc (X) to obtain p-adic and geometric information.

Perfect p-torsion of abelian varieties (joint with D’Addezio)

- F function field over $\overline{\mathbb{F}}_{q}, F^{\text {perf }}$ perfection;

Perfect p-torsion of abelian varieties (joint with D’Addezio)

- F function field over $\overline{\mathbb{F}}_{q}, F^{\text {perf }}$ perfection;
- A abelian variety / F without isotrivial isogeny factors.

Perfect p-torsion of abelian varieties (joint with D’Addezio)

- F function field over $\overline{\mathbb{F}}_{q}, F^{\text {perf }}$ perfection;
- A abelian variety / F without isotrivial isogeny factors.

Fact (Lang-Néron)

$A(F)$ is a finitely generated abelian group.

Perfect p-torsion of abelian varieties (joint with D’Addezio)

- F function field over $\overline{\mathbb{F}}_{q}, F^{\text {perf }}$ perfection;
- A abelian variety / F without isotrivial isogeny factors.

Fact (Lang-Néron)

$A(F)$ is a finitely generated abelian group.

Question

What about $A\left(F^{\text {perf }}\right)$?

Perfect p-torsion of abelian varieties (joint with D’Addezio)

- F function field over $\overline{\mathbb{F}}_{q}, F^{\text {perf }}$ perfection;
- A abelian variety / F without isotrivial isogeny factors.

Fact (Lang-Néron)

$A(F)$ is a finitely generated abelian group.

Question

What about $A\left(F^{\text {perf }}\right)$?

Remark

In general $A\left(F^{\text {perf }}\right)$ is not finitely generated.

Perfect p-torsion of abelian varieties (joint with D’Addezio)

- F function field over $\overline{\mathbb{F}}_{q}, F^{\text {perf }}$ perfection;
- A abelian variety / F without isotrivial isogeny factors.

Fact (Lang-Néron)

$A(F)$ is a finitely generated abelian group.

Question

What about $A\left(F^{\text {perf }}\right)$?

Remark

In general $A\left(F^{\text {perf }}\right)$ is not finitely generated.

Question (Esnault)

 Is $A\left(F^{\text {perf }}\right)_{\text {tors }}$ finite?
Perfect p-torsion of abelian varieties (joint with D’Addezio)

Theorem 4 (A.-D’Addezio)
$A\left(F^{\text {perf }}\right)_{\text {tors }}$ is finite.

Perfect p-torsion of abelian varieties (joint with D’Addezio)

Theorem 4 (A.-D'Addezio)

$A\left(F^{\text {perf }}\right)_{\text {tors }}$ is finite.

Remarks

- If $\ell \neq p, A\left(F^{\text {perf }}\right)\left[\ell^{\infty}\right]=A(F)\left[\ell^{\infty}\right] \Rightarrow$ enough to show $A\left(F^{\text {perf }}\right)\left[p^{\infty}\right]$ is finite;

Perfect p-torsion of abelian varieties (joint with D’Addezio)

Theorem 4 (A.-D'Addezio)

$A\left(F^{\text {perf }}\right)_{\text {tors }}$ is finite.

Remarks

- If $\ell \neq p, A\left(F^{\text {perf }}\right)\left[\ell^{\infty}\right]=A(F)\left[\ell^{\infty}\right] \Rightarrow$ enough to show $A\left(F^{\text {perf }}\right)\left[p^{\infty}\right]$ is finite;
- $\left|A\left(F^{\text {perf }}\right)\left[p^{\infty}\right]\right|$ finite $\Leftrightarrow \operatorname{Hom}_{\text {Fperf }}\left(\mathbb{Q}_{p} / \mathbb{Z}_{p}, A\left[p^{\infty}\right]\right)=0$;

Perfect p-torsion of abelian varieties (joint with D’Addezio)

Theorem 4 (A.-D'Addezio)

$A\left(F^{\text {perf }}\right)_{\text {tors }}$ is finite.

Remarks

- If $\ell \neq p, A\left(F^{\text {perf }}\right)\left[\ell^{\infty}\right]=A(F)\left[\ell^{\infty}\right] \Rightarrow$ enough to show $A\left(F^{\text {perf }}\right)\left[p^{\infty}\right]$ is finite;
- $\left|A\left(F^{\text {perf }}\right)\left[p^{\infty}\right]\right|$ finite $\Leftrightarrow \operatorname{Hom}_{\text {Fperf }}\left(\mathbb{Q}_{p} / \mathbb{Z}_{p}, A\left[p^{\infty}\right]\right)=0$;
- \exists exact sequence p-divisible groups

$$
\begin{equation*}
0 \rightarrow A\left[p^{\infty}\right]^{0} \rightarrow A\left[p^{\infty}\right] \rightarrow A\left[p^{\infty}\right]^{\text {et }} \rightarrow 0 ; \tag{1}
\end{equation*}
$$

Perfect p-torsion of abelian varieties (joint with D’Addezio)

Theorem 4 (A.-D’Addezio)

$A\left(F^{\text {perf }}\right)_{\text {tors }}$ is finite.

Remarks

- If $\ell \neq p, A\left(F^{\text {perf }}\right)\left[\ell^{\infty}\right]=A(F)\left[\ell^{\infty}\right] \Rightarrow$ enough to show $A\left(F^{\text {perf }}\right)\left[p^{\infty}\right]$ is finite;
- $\left|A\left(F^{\text {perf }}\right)\left[p^{\infty}\right]\right|$ finite $\Leftrightarrow \operatorname{Hom}_{F \text { perf }}\left(\mathbb{Q}_{p} / \mathbb{Z}_{p}, A\left[p^{\infty}\right]\right)=0$;
- \exists exact sequence p-divisible groups

$$
\begin{equation*}
0 \rightarrow A\left[p^{\infty}\right]^{0} \rightarrow A\left[p^{\infty}\right] \rightarrow A\left[p^{\infty}\right]^{\text {ét }} \rightarrow 0 \tag{1}
\end{equation*}
$$

- (1) splits over $F^{\text {perf }} \Rightarrow$ $\operatorname{Hom}_{F \text { perf }}\left(\mathbb{Q}_{p} / \mathbb{Z}_{p}, A\left[p^{\infty}\right]\right)=\operatorname{Hom}_{F \text { perf }}\left(\mathbb{Q}_{p} / \mathbb{Z}_{p}, A\left[p^{\infty}\right]^{\text {ét }}\right) ;$

Perfect p-torsion of abelian varieties (joint with D’Addezio)

Remarks

- $A\left[p^{\infty}\right]^{\text {ét étale }} \Rightarrow$ $\operatorname{Hom}_{\text {Fpert }}\left(\mathbb{Q}_{p} / \mathbb{Z}_{p}, A\left[p^{\infty}\right]^{\text {et }}\right)=\operatorname{Hom}_{F}\left(\mathbb{Q}_{p} / \mathbb{Z}_{p}, A\left[p^{\infty}\right]^{\text {et }}\right) ;$

Perfect p-torsion of abelian varieties (joint with D’Addezio)

Remarks

- $A\left[p^{\infty}\right]^{\text {ét étale }} \Rightarrow$ $\operatorname{Hom}_{\text {Fpert }}\left(\mathbb{Q}_{p} / \mathbb{Z}_{p}, A\left[p^{\infty}\right]^{\text {et }}\right)=\operatorname{Hom}_{F}\left(\mathbb{Q}_{p} / \mathbb{Z}_{p}, A\left[p^{\infty}\right]^{\text {et } t}\right)$;
- Theorem 4 holds $\Leftrightarrow \operatorname{Hom}_{F}\left(\mathbb{Q}_{p} / \mathbb{Z}_{p}, A\left[p^{\infty}\right]^{\text {et }}\right)=0$

Perfect p-torsion of abelian varieties (joint with D’Addezio)

Remarks

- $A\left[p^{\infty}\right]^{\text {et }}$ étale \Rightarrow $\operatorname{Hom}_{\text {Fperf }}\left(\mathbb{Q}_{p} / \mathbb{Z}_{p}, A\left[p^{\infty}\right]^{\text {ett }}\right)=\operatorname{Hom}_{F}\left(\mathbb{Q}_{p} / \mathbb{Z}_{p}, A\left[p^{\infty}\right]^{\text {et } t}\right)$;
- Theorem 4 holds $\Leftrightarrow \operatorname{Hom}_{F}\left(\mathbb{Q}_{p} / \mathbb{Z}_{p}, A\left[p^{\infty}\right]^{\text {et }}\right)=0$
- Lang-Néron $\Rightarrow \operatorname{Hom}_{F}\left(\mathbb{Q}_{p} / \mathbb{Z}_{p}, A\left[p^{\infty}\right]\right)=0$

Perfect p-torsion of abelian varieties (joint with D’Addezio)

Remarks

- $A\left[p^{\infty}\right]^{\text {et étale }} \Rightarrow$ $\operatorname{Hom}_{\text {Fperf }}\left(\mathbb{Q}_{p} / \mathbb{Z}_{p}, A\left[p^{\infty}\right]^{\text {et }}\right)=\operatorname{Hom}_{F}\left(\mathbb{Q}_{p} / \mathbb{Z}_{p}, A\left[p^{\infty}\right]^{\text {et }}\right)$;
- Theorem 4 holds $\Leftrightarrow \operatorname{Hom}_{F}\left(\mathbb{Q}_{p} / \mathbb{Z}_{p}, A\left[p^{\infty}\right]^{\text {et }}\right)=0$
- Lang-Néron $\Rightarrow \operatorname{Hom}_{F}\left(\mathbb{Q}_{p} / \mathbb{Z}_{p}, A\left[p^{\infty}\right]\right)=0$

Theorem 4'(A. D'Addezio)

The natural map $\operatorname{Hom}_{F}\left(\mathbb{Q}_{p} / \mathbb{Z}_{p}, A\left[p^{\infty}\right]\right) \rightarrow \operatorname{Hom}_{F}\left(\mathbb{Q}_{p} / \mathbb{Z}_{p}, A\left[p^{\infty}\right]^{\text {tt }}\right)$ is surjective up to isogeny.

Perfect p-torsion of abelian varieties (joint with D'Addezio)

Remarks

- $A\left[p^{\infty}\right]^{\text {ét étale }} \Rightarrow$ $\operatorname{Hom}_{F \text { perf }}\left(\mathbb{Q}_{p} / \mathbb{Z}_{p}, A\left[p^{\infty}\right]^{\text {ét }}\right)=\operatorname{Hom}_{F}\left(\mathbb{Q}_{p} / \mathbb{Z}_{p}, A\left[p^{\infty}\right]^{\text {ét }}\right) ;$
- Theorem 4 holds $\Leftrightarrow \operatorname{Hom}_{F}\left(\mathbb{Q}_{p} / \mathbb{Z}_{p}, A\left[p^{\infty}\right]^{\text {ét }}\right)=0$
- Lang-Néron $\Rightarrow \operatorname{Hom}_{F}\left(\mathbb{Q}_{p} / \mathbb{Z}_{p}, A\left[p^{\infty}\right]\right)=0$

Theorem 4'(A. D'Addezio)

The natural map $\operatorname{Hom}_{F}\left(\mathbb{Q}_{p} / \mathbb{Z}_{p}, A\left[p^{\infty}\right]\right) \rightarrow \operatorname{Hom}_{F}\left(\mathbb{Q}_{p} / \mathbb{Z}_{p}, A\left[p^{\infty}\right]^{\text {ét }}\right)$ is surjective up to isogeny.

Main problem:

(1) DOES NOT split over F.

Perfect p-torsion of abelian varieties (joint with D’Addezio)

Spreading out and Dieudonné theory

- $f: Y \rightarrow X$ nice model $/ \mathbb{F}_{q}$ of A / F;

Perfect p-torsion of abelian varieties (joint with D’Addezio)

Spreading out and Dieudonné theory

- $f: Y \rightarrow X$ nice model $/ \mathbb{F}_{q}$ of A / F;
- Fully faithful controvariant functor (Berthelot, Breen, Messing)

$$
\mathbb{D}: p-\operatorname{div}(X)_{\mathbb{Q}} \rightarrow \text { F-Isoc }(X)
$$

Perfect p-torsion of abelian varieties (joint with D'Addezio)

Spreading out and Dieudonné theory

- $f: Y \rightarrow X$ nice model $/ \mathbb{F}_{q}$ of A / F;
- Fully faithful controvariant functor (Berthelot, Breen, Messing)

$$
\mathbb{D}: p-\operatorname{div}(X)_{\mathbb{Q}} \rightarrow \text { F-Isoc }(X)
$$

- $\mathcal{E}:=R^{1} f_{\text {crys }, *} \mathcal{O}_{Y / K}$ fits in a exact sequence

$$
0 \rightarrow \varepsilon^{\text {ét }} \rightarrow \mathcal{E} \rightarrow \varepsilon^{0} \rightarrow 0
$$

coming from (1).

Perfect p-torsion of abelian varieties (joint with D'Addezio)

Spreading out and Dieudonné theory

- $f: Y \rightarrow X$ nice model $/ \mathbb{F}_{q}$ of A / F;
- Fully faithful controvariant functor (Berthelot, Breen, Messing)

$$
\mathbb{D}: p-\operatorname{div}(X)_{\mathbb{Q}} \rightarrow \text { F-Isoc }(X)
$$

- $\mathcal{E}:=R^{1} f_{\text {crys }, *} \mathcal{O}_{Y / K}$ fits in a exact sequence

$$
0 \rightarrow \varepsilon^{\text {ét }} \rightarrow \mathcal{E} \rightarrow \varepsilon^{0} \rightarrow 0
$$

coming from (1).

- $\mathbb{D}\left(Y\left[p^{\infty}\right]\right)=\mathcal{E}$ and $\mathbb{D}\left(Y\left[p^{\infty}\right]^{\text {ét }}\right)=\mathcal{E}^{\text {ét }}$

Perfect p-torsion of abelian varieties (joint with D’Addezio)

Theorem 4" (A.-D’Addezio)

$\operatorname{Hom}_{I \mathbf{s o c}(X)}\left(\mathcal{E}, \mathcal{O}_{X}\right) \rightarrow \operatorname{Hom}_{I \mathbf{s o c}(X)}\left(\mathcal{E}^{\text {ét }}, \mathcal{O}_{X}\right)$
is surjective.

Perfect p-torsion of abelian varieties (joint with D'Addezio)

Theorem 4" (A.-D’Addezio)
$\operatorname{Hom}_{I \operatorname{soc}(X)}\left(\varepsilon, \mathcal{O}_{X}\right) \rightarrow \operatorname{Hom}_{\mathbf{I s o c}(X)}\left(\mathcal{E}^{\text {et }}, \mathcal{O}_{X}\right)$
is surjective.
Main ideas:

- ε image of a ε^{\dagger} via \mathbf{F}-lsoc ${ }^{\dagger}(X) \rightarrow \mathbf{F}$-Isoc (X) (Etesse);

Perfect p-torsion of abelian varieties (joint with D'Addezio)

Theorem 4" (A.-D’Addezio)
$\operatorname{Hom}_{I \operatorname{soc}(X)}\left(\varepsilon, \mathcal{O}_{X}\right) \rightarrow \operatorname{Hom}_{\mathbf{I s o c}(X)}\left(\mathcal{E}^{\text {et }}, \mathcal{O}_{X}\right)$
is surjective.
Main ideas:

- ε image of a ε^{\dagger} via \mathbf{F}-lsoc ${ }^{\dagger}(X) \rightarrow \mathbf{F}$-Isoc (X) (Etesse);
- ε^{\dagger} is semisimple in \mathbf{F} - soc $^{\dagger}(X)$;

Perfect p-torsion of abelian varieties (joint with D'Addezio)

Theorem 4" (A.-D’Addezio)

$$
\operatorname{Hom}_{I \mathbf{s o c}(X)}\left(\mathcal{E}, \mathcal{O}_{X}\right) \rightarrow \operatorname{Hom}_{I \mathbf{s o c}(X)}\left(\mathcal{E}^{\text {ét }}, \mathcal{O}_{X}\right)
$$

is surjective.

Main ideas:

- \mathcal{E} image of a \mathcal{E}^{\dagger} via F-Isoc $^{\dagger}(X) \rightarrow$ F-Isoc (X) (Etesse);
- ε^{\dagger} is semisimple in $\mathrm{F}^{\text {-Isoc }}{ }^{\dagger}(X)$;
- Transfer this information comparing the (maximal tori in the) monodromy groups of \mathcal{E}^{\dagger} and \mathcal{E}.

THANK YOU FOR

THE ATTENTION!

