l-adic, *p*-adic and geometric invariants in families of varieties Ph.D. Defense

Emiliano Ambrosi

École Polytechnique

18/06/2019

• *k* field of characteristic $p \ge 0$;

- *k* field of characteristic $p \ge 0$;
- Y smooth projective k-variety.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

- *k* field of characteristic $p \ge 0$;
- Y smooth projective k-variety.

Cubic surface

Geometric invariants:

Geometric invariants:

• Néron-Severi NS(Y) $\otimes \mathbb{Q}$;

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 – 釣��

Geometric invariants:

- Néron-Severi NS(Y) $\otimes \mathbb{Q}$;
- Picard group Pic(Y) ⊗ Q (more generally Chow groups CHⁱ(Y) ⊗ Q);

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Geometric invariants:

- Néron-Severi NS(Y) $\otimes \mathbb{Q}$;
- Picard group Pic(Y) ⊗ Q (more generally Chow groups CHⁱ(Y) ⊗ Q);

Cohomological invariants:

Geometric invariants:

- Néron-Severi NS(Y) $\otimes \mathbb{Q}$;
- Picard group Pic(Y) ⊗ Q (more generally Chow groups CHⁱ(Y) ⊗ Q);

Cohomological invariants:

• $k = \mathbb{C}$, singular cohomology $H^{i}(Y(\mathbb{C}), \mathbb{Q})$, with Hodge filtration;

Geometric invariants:

- Néron-Severi NS(Y) $\otimes \mathbb{Q}$;
- Picard group Pic(Y) ⊗ Q (more generally Chow groups CHⁱ(Y) ⊗ Q);

Cohomological invariants:

- $k = \mathbb{C}$, singular cohomology $H^{i}(Y(\mathbb{C}), \mathbb{Q})$, with Hodge filtration;
- *k* arbitrary, ℓ ≠ p prime, ℓ-adic étale cohomology Hⁱ(Y_k, Q_ℓ), with action of Gal(k) := π₁(k);

Geometric invariants:

- Néron-Severi NS(Y) $\otimes \mathbb{Q}$;
- Picard group Pic(Y) ⊗ Q (more generally Chow groups CHⁱ(Y) ⊗ Q);

Cohomological invariants:

- $k = \mathbb{C}$, singular cohomology $H^{i}(Y(\mathbb{C}), \mathbb{Q})$, with Hodge filtration;
- *k* arbitrary, ℓ ≠ p prime, ℓ-adic étale cohomology Hⁱ(Y_k, Q_ℓ), with action of Gal(k) := π₁(k);

(日) (日) (日) (日) (日) (日) (日)

k perfect and p > 0, crystalline Hⁱ_{crys}(Y) and rigid Hⁱ_{rig}(Y) cohomology, with action of Frobenius;

Geometric invariants:

- Néron-Severi NS(Y) $\otimes \mathbb{Q}$;
- Picard group Pic(Y) ⊗ Q (more generally Chow groups CHⁱ(Y) ⊗ Q);

Cohomological invariants:

- $k = \mathbb{C}$, singular cohomology $H^{i}(Y(\mathbb{C}), \mathbb{Q})$, with Hodge filtration;
- *k* arbitrary, ℓ ≠ p prime, ℓ-adic étale cohomology Hⁱ(Y_k, Q_ℓ), with action of Gal(k) := π₁(k);
- k perfect and p > 0, crystalline Hⁱ_{crys}(Y) and rigid Hⁱ_{rig}(Y) cohomology, with action of Frobenius;

Cycle class map

 $c_Y : CH^i(Y) \otimes \mathbb{Q} \to H^{2i}(Y)$ relates geometry to cohomology.

 $\{Y_x\}_{x \in X}/k$ family of smooth projective varieties \leftrightarrow smooth projective morphism $f: Y \to X$.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

 $\{Y_x\}_{x \in X}/k$ family of smooth projective varieties \leftrightarrow smooth projective morphism $f: Y \to X$.

イロト イポト イヨト イヨト ヨー のくぐ

Fibres

X smooth geometrically connected, x closed point,

 $\{Y_x\}_{x \in X}/k$ family of smooth projective varieties \leftrightarrow smooth projective morphism $f: Y \to X$.

(日) (日) (日) (日) (日) (日) (日)

Fibres

X smooth geometrically connected, x closed point,

 $\{Y_x\}_{x \in X}/k$ family of smooth projective varieties \leftrightarrow smooth projective morphism $f: Y \to X$.

Fibres

X smooth geometrically connected, x closed point, η generic point.

(日) (日) (日) (日) (日) (日) (日)

 $\{Y_x\}_{x \in X}/k$ family of smooth projective varieties \leftrightarrow smooth projective morphism $f: Y \to X$.

Fibres

X smooth geometrically connected, x closed point, η generic point.

Question

How do the invariants of Y_x and $Y_{\overline{x}}$ vary with $x \in X$?

Question

How do the invariants of Y_x and $Y_{\overline{x}}$ vary with $x \in X$?

• Dimensions of $H^{i}(Y_{x}(\mathbb{C}), \mathbb{Q})$, $H^{i}(Y_{\overline{x}}, \mathbb{Q}_{\ell})$, $H^{i}_{crys}(Y_{x})$, $H^{i}_{rig}(Y_{x})$ independent of $x \in X$;

Question

How do the invariants of Y_x and $Y_{\overline{x}}$ vary with $x \in X$?

- Dimensions of $H^{i}(Y_{x}(\mathbb{C}), \mathbb{Q})$, $H^{i}(Y_{\overline{x}}, \mathbb{Q}_{\ell})$, $H^{i}_{crys}(Y_{x})$, $H^{i}_{rig}(Y_{x})$ independent of $x \in X$;
- Extra structures (Hodge filtrations, Galois actions, Frobenius actions) can be very different!

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Question

How do the invariants of Y_x and $Y_{\overline{x}}$ vary with $x \in X$?

- Dimensions of $H^{i}(Y_{x}(\mathbb{C}), \mathbb{Q})$, $H^{i}(Y_{\overline{x}}, \mathbb{Q}_{\ell})$, $H^{i}_{crys}(Y_{x})$, $H^{i}_{rig}(Y_{x})$ independent of $x \in X$;
- Extra structures (Hodge filtrations, Galois actions, Frobenius actions) can be very different!

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

• Also $NS(Y_x) \otimes \mathbb{Q}$, $Pic(Y_x) \otimes \mathbb{Q}$, $CH^i(Y_x) \otimes \mathbb{Q}$ vary.

• Injective specialization morphism:

 $sp_{\eta,x}: \mathsf{NS}(Y_{\overline{\eta}})\otimes \mathbb{Q} \hookrightarrow \mathsf{NS}(Y_{\overline{x}})\otimes \mathbb{Q};$

イロト イポト イヨト イヨト ヨー のくぐ

Injective specialization morphism:

$$sp_{\eta,x}: \mathsf{NS}(Y_{\overline{\eta}})\otimes \mathbb{Q} \hookrightarrow \mathsf{NS}(Y_{\overline{x}})\otimes \mathbb{Q};$$

• Arithmetic variant:

 $sp_{\eta,x}^{ar}$: NS $(Y_{\eta}) \otimes \mathbb{Q} \hookrightarrow$ NS $(Y_{x}) \otimes \mathbb{Q}$.

• Injective specialization morphism:

$$sp_{\eta,x}: \mathsf{NS}(Y_{\overline{\eta}})\otimes \mathbb{Q} \hookrightarrow \mathsf{NS}(Y_{\overline{x}})\otimes \mathbb{Q};$$

• Arithmetic variant:

 $sp_{\eta,x}^{ar}$: NS $(Y_{\eta}) \otimes \mathbb{Q} \hookrightarrow$ NS $(Y_{x}) \otimes \mathbb{Q}$.

Definition

x NS-generic (resp. arithmetically NS-generic) if $sp_{\eta,x}$ (resp. $sp_{\eta,x}^{ar}$) isomorphism.

Questions

Can we describe the set of (arithmetically) NS-generic closed points?

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 – 釣��

Questions

- Can we describe the set of (arithmetically) NS-generic closed points?
- Is the set of (arithmetically) NS-generic closed points not empty?

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Questions

- Can we describe the set of (arithmetically) NS-generic closed points?
- Is the set of (arithmetically) NS-generic closed points not empty?

The answers depend on the arithmetic of k.

Example 1

• $Y \rightarrow X$ not isotrivial family of elliptic curves, $f: Y \times_X Y \rightarrow X$

Example 1

• $Y \rightarrow X$ not isotrivial family of elliptic curves, $f: Y \times_X Y \rightarrow X$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

• *x* is NS-generic \Leftrightarrow $Y_{\overline{x}}$ has not complex multiplication.

Example 1

- $Y \rightarrow X$ not isotrivial family of elliptic curves, $f: Y \times_X Y \rightarrow X$
- *x* is NS-generic $\Leftrightarrow Y_{\overline{x}}$ has not complex multiplication.
- $k = \mathbb{F}_q$ finite field $\Rightarrow Y_{\overline{X}}$ has always complex multiplication.

Example 2

• $Y \subseteq \mathbb{P}^n$ of dimension ≥ 3 ;

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 – 釣��

Example 2

- $Y \subseteq \mathbb{P}^n$ of dimension ≥ 3 ;
- $\{Y_x\}_{x \in X}$ nice pencil hyperplane sections $Y_x \subseteq Y$;

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 – 釣��

Example 2

- $Y \subseteq \mathbb{P}^n$ of dimension ≥ 3 ;
- $\{Y_x\}_{x \in X}$ nice pencil hyperplane sections $Y_x \subseteq Y$;
- *x* arithmetically NS-generic \Leftrightarrow NS(Y_x) $\otimes \mathbb{Q} \simeq$ NS(Y) $\otimes \mathbb{Q}$.

Example 2

- $Y \subseteq \mathbb{P}^n$ of dimension ≥ 3 ;
- $\{Y_x\}_{x \in X}$ nice pencil hyperplane sections $Y_x \subseteq Y$;
- *x* arithmetically NS-generic \Leftrightarrow NS(Y_x) $\otimes \mathbb{Q} \simeq$ NS(Y) $\otimes \mathbb{Q}$.

Example 2.0

• Veronese's embedding of degree 2

$$\mathbb{P}^3_k \to \mathbb{P}^9_k$$
$$[x: y: z: w] \mapsto [x^2: y^2: z^2: w^2: xy: xz: xw: yz: yw: zw];$$

Example 2

- $Y \subseteq \mathbb{P}^n$ of dimension ≥ 3 ;
- $\{Y_x\}_{x \in X}$ nice pencil hyperplane sections $Y_x \subseteq Y$;
- *x* arithmetically NS-generic \Leftrightarrow NS(Y_x) $\otimes \mathbb{Q} \simeq$ NS(Y) $\otimes \mathbb{Q}$.

Example 2.0

• Veronese's embedding of degree 2

$$\mathbb{P}^3_k \to \mathbb{P}^9_k$$
$$[x:y:z:w] \mapsto [x^2:y^2:z^2:w^2:xy:xz:xw:yz:yw:zw];$$

• Hyperplane section $Y_x \leftrightarrow$ Quadric $Q_x \subseteq \mathbb{P}^3$;

Example 2

- $Y \subseteq \mathbb{P}^n$ of dimension ≥ 3 ;
- $\{Y_x\}_{x \in X}$ nice pencil hyperplane sections $Y_x \subseteq Y$;
- *x* arithmetically NS-generic \Leftrightarrow NS(Y_x) $\otimes \mathbb{Q} \simeq$ NS(Y) $\otimes \mathbb{Q}$.

Example 2.0

• Veronese's embedding of degree 2

$$\mathbb{P}^3_k \to \mathbb{P}^9_k$$
$$[x:y:z:w] \mapsto [x^2:y^2:z^2:w^2:xy:xz:xw:yz:yw:zw];$$

Hyperplane section Y_x ↔ Quadric Q_x ⊆ P³; k = k ⇒ Q_x ≃ P¹ × P¹,

 $\mathsf{NS}(Q_x)\otimes\mathbb{Q}\simeq\mathbb{Q}\times\mathbb{Q}, \quad \text{while} \quad \mathsf{NS}(\mathbb{P}^3)\otimes\mathbb{Q}\simeq\mathbb{Q}.$

Theorem 1 (A.)

p > 0, *k* infinite finitely generated (i.e. $k = \mathbb{F}_{p}(T_{1}, ..., T_{n})) \Rightarrow$

・ロト・西ト・田・・田・ ひゃぐ

Theorem 1 (A.)

ho > 0, k infinite finitely generated (i.e. $k = \mathbb{F}_{
ho}(T_1, ..., T_n)) \Rightarrow$

 ∃ infinitely many arithmetically NS-generic points of (higher enough) bounded degree;

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Theorem 1 (A.)

p > 0, k infinite finitely generated (i.e. $k = \mathbb{F}_{p}(T_{1}, ..., T_{n})) \Rightarrow$

 ∃ infinitely many arithmetically NS-generic points of (higher enough) bounded degree;

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

2 X curve \Rightarrow all but finitely many $x \in X(k)$ NS-generic.

Theorem 1 (A.)

- p > 0, *k* infinite finitely generated (i.e. $k = \mathbb{F}_{p}(T_{1}, ..., T_{n})) \Rightarrow$
 - ∃ infinitely many arithmetically NS-generic points of (higher enough) bounded degree;

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

2 X curve \Rightarrow all but finitely many $x \in X(k)$ NS-generic.

Remark (p=0)

- If *p* = 0:
 - is due to André;
 - Is due to Cadoret-Tamagawa.

Tate conjecture

k finitely generated, $\ell \neq p$.

Tate conjecture

k finitely generated, $\ell \neq p$.

Cycles class map

$$\mathfrak{C}_Y: \mathsf{NS}(Y)\otimes \mathbb{Q}_\ell \hookrightarrow \mathsf{H}^2(Y_{\overline{k}}, \mathbb{Q}_\ell(1))$$

contained in the fixed points $H^{2}(Y_{\overline{k}}, \mathbb{Q}_{\ell}(1))^{\pi_{1}(k)};$

Tate conjecture

k finitely generated, $\ell \neq p$.

Cycles class map

$$\mathfrak{C}_Y: \mathsf{NS}(Y)\otimes \mathbb{Q}_\ell \hookrightarrow \mathsf{H}^2(Y_{\overline{k}}, \mathbb{Q}_\ell(1))$$

contained in the fixed points

 $H^{2}(Y_{\overline{k}}, \mathbb{Q}_{\ell}(1))^{\pi_{1}(k)};$

Conjecture (Tate)

$${\mathcal C}_{Y}: {\sf NS}(Y)\otimes {\mathbb Q}_{\ell} \xrightarrow{\simeq} {\sf H}^2(Y_{\overline{k}}, {\mathbb Q}_{\ell}(1))^{\pi_1(k)}.$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

• $\{H^2(Y_{\overline{x}}, \mathbb{Q}_{\ell}(1))\}_{x \in X} \ell$ -adic local system,

- $\{H^2(Y_{\overline{X}}, \mathbb{Q}_{\ell}(1))\}_{x \in X} \ell$ -adic local system,
- e.g. representation of étale fundamental group $\pi_1(X)$.

- $\{H^2(Y_{\overline{x}}, \mathbb{Q}_{\ell}(1))\}_{x \in X} \ell$ -adic local system,
- e.g. representation of étale fundamental group $\pi_1(X)$.

$$\pi_1(k(\eta)) \xrightarrow{\rho_{\ell,\eta}} GL(\mathsf{H}^2(Y_{\overline{\eta}}, \mathbb{Q}_\ell(1)))$$

$$\pi_1(k(x)) \xrightarrow{\rho_{\ell,x}} GL(\mathsf{H}^2(Y_{\overline{x}}, \mathbb{Q}_\ell(1)))$$

- $\{H^2(Y_{\overline{X}}, \mathbb{Q}_{\ell}(1))\}_{x \in X} \ell$ -adic local system,
- e.g. representation of étale fundamental group $\pi_1(X)$.

- $\{H^2(Y_{\overline{X}}, \mathbb{Q}_{\ell}(1))\}_{x \in X} \ell$ -adic local system,
- e.g. representation of étale fundamental group $\pi_1(X)$.

(日) (日) (日) (日) (日) (日) (日)

- $\{H^2(Y_{\overline{x}}, \mathbb{Q}_{\ell}(1))\}_{x \in X} \ell$ -adic local system,
- e.g. representation of étale fundamental group $\pi_1(X)$.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

- $\{H^2(Y_{\overline{X}}, \mathbb{Q}_{\ell}(1))\}_{x \in X} \ell$ -adic local system,
- e.g. representation of étale fundamental group $\pi_1(X)$.

Inclusion of *l*-adic Lie groups

$$\rho_{\ell}(\pi_1(k(x))) =: \Pi_{\ell,x} \subseteq \Pi_{\ell} := \rho_{\ell}(\pi_1(X))$$

Definition

x Galois generic (resp. strictly Galois generic) if $[\Pi_\ell:\Pi_{\ell,x}]<+\infty$ (resp. $\Pi_{\ell,x}=\Pi_\ell)$

▲□▶▲圖▶▲臣▶▲臣▶ 臣 のへぐ

Definition

x Galois generic (resp. strictly Galois generic) if $[\Pi_{\ell} : \Pi_{\ell,x}] < +\infty$ (resp. $\Pi_{\ell,x} = \Pi_{\ell}$)

Proposition (Serre)

k infinite finitely generated $\Rightarrow \exists$ infinitely many strictly Galois generic points of (higher enough) bounded degree.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Definition

x Galois generic (resp. strictly Galois generic) if $[\Pi_{\ell} : \Pi_{\ell,x}] < +\infty$ (resp. $\Pi_{\ell,x} = \Pi_{\ell}$)

Proposition (Serre)

k infinite finitely generated $\Rightarrow \exists$ infinitely many strictly Galois generic points of (higher enough) bounded degree.

Theorem 2 (A.)

p > 0, *k* finitely generated, *X* curve \Rightarrow all but finitely many $x \in X(k)$ Galois generic.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Definition

x Galois generic (resp. strictly Galois generic) if $[\Pi_{\ell} : \Pi_{\ell,x}] < +\infty$ (resp. $\Pi_{\ell,x} = \Pi_{\ell}$)

Proposition (Serre)

k infinite finitely generated $\Rightarrow \exists$ infinitely many strictly Galois generic points of (higher enough) bounded degree.

Theorem 2 (A.)

p > 0, k finitely generated, X curve \Rightarrow all but finitely many $x \in X(k)$ Galois generic.

Remark (p=0)

If p = 0 Theorem 2 is due to Cadoret-Tamagawa.

Anabelian dictionary

• $U \subseteq \Pi_{\ell}$ open subgroup \leftrightarrow connected étale cover $X_U \rightarrow X$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

Anabelian dictionary

• $U \subseteq \Pi_{\ell}$ open subgroup \leftrightarrow connected étale cover $X_U \rightarrow X$

• $\Pi_{\ell,x} \subseteq U \Leftrightarrow k(x) \xrightarrow{x} X$ lifts to a k(x)-rational point of X_U .

$$\begin{array}{c} X_{U} \\ \exists & \uparrow \\ k(x) \xrightarrow{\exists} & X \end{array}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Anabelian dictionary

• $U \subseteq \Pi_{\ell}$ open subgroup \leftrightarrow connected étale cover $X_U \rightarrow X$

• $\Pi_{\ell,x} \subseteq U \Leftrightarrow k(x) \xrightarrow{x} X$ lifts to a k(x)-rational point of X_U .

$$\begin{array}{c} X_{U} \\ \exists & \uparrow \\ k(x) \xrightarrow{\exists} & \chi \end{array}$$

Construction (Cadoret-Tamagawa)

 \exists projective system $h_n : \mathfrak{X}_n \to X$ of étale covers such that Theorem 2 holds

$$\Leftrightarrow \quad \operatorname{Im}(\varprojlim_n(\mathfrak{X}_n(k)) \to X(k)) \text{ finite}$$

Mordell conjecture (Samuel-Voloch)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Genus g_{χ_n} of $\chi_n \gg 0 \Rightarrow \chi_n(k)$ finite.

Mordell conjecture (Samuel-Voloch)

Genus $g_{\mathfrak{X}_n}$ of $\mathfrak{X}_n \gg 0 \Rightarrow \mathfrak{X}_n(k)$ finite.

Key Proposition (A.)

$$\lim_{n\mapsto+\infty}g_{\mathfrak{X}_n}=+\infty.$$

Mordell conjecture (Samuel-Voloch)

Genus $g_{\mathfrak{X}_n}$ of $\mathfrak{X}_n \gg 0 \Rightarrow \mathfrak{X}_n(k)$ finite.

Key Proposition (A.)

$$\lim_{n\mapsto+\infty}g_{\mathfrak{X}_n}=+\infty.$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Main ingredients:

Riemann-Hurwitz formula;

Mordell conjecture (Samuel-Voloch)

Genus $g_{\mathfrak{X}_n}$ of $\mathfrak{X}_n \gg 0 \Rightarrow \mathfrak{X}_n(k)$ finite.

Key Proposition (A.)

$$\lim_{n\mapsto+\infty}g_{\mathfrak{X}_n}=+\infty.$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Main ingredients:

- Riemann-Hurwitz formula;
- Study of wild ramification;

Mordell conjecture (Samuel-Voloch)

Genus $g_{\mathfrak{X}_n}$ of $\mathfrak{X}_n \gg 0 \Rightarrow \mathfrak{X}_n(k)$ finite.

Key Proposition (A.)

$$\lim_{n\mapsto+\infty}g_{\mathfrak{X}_n}=+\infty.$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Main ingredients:

- Riemann-Hurwitz formula;
- Study of wild ramification;
- *l*-adic Lie groups theory.

Tate conjecture predicts:

(Strictly) Galois generic points are (arithmetically) NS-generic.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Tate conjecture predicts:

(Strictly) Galois generic points are (arithmetically) NS-generic.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Theorem 3 (A.)

p > 0, *k* finitely generated \Rightarrow (strictly) Galois generic are (arithmetically) NS-generic.

Tate conjecture predicts:

(Strictly) Galois generic points are (arithmetically) NS-generic.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Theorem 3 (A.)

p > 0, *k* finitely generated \Rightarrow (strictly) Galois generic are (arithmetically) NS-generic.

Remark (p=0)

If p = 0, Theorem 3 due to André. Main ingredients:

Tate conjecture predicts:

(Strictly) Galois generic points are (arithmetically) NS-generic.

Theorem 3 (A.)

p > 0, *k* finitely generated \Rightarrow (strictly) Galois generic are (arithmetically) NS-generic.

Remark (p=0)

- If p = 0, Theorem 3 due to André. Main ingredients:
- Hodge theory (via the Lefschetz (1,1) Theorem), to link algebraic cycles and cohomology;

Tate conjecture predicts:

(Strictly) Galois generic points are (arithmetically) NS-generic.

Theorem 3 (A.)

p > 0, *k* finitely generated \Rightarrow (strictly) Galois generic are (arithmetically) NS-generic.

Remark (p=0)

- If p = 0, Theorem 3 due to André. Main ingredients:
- Hodge theory (via the Lefschetz (1,1) Theorem), to link algebraic cycles and cohomology;
- (2) Comparison étale-singular sites, to link Hodge theory to ρ_{ℓ} .

Replacements

(1) replaced with the crystalline variational Tate conjecture.

Replacements

(1) replaced with the crystalline variational Tate conjecture.

(2) replaced with Tannakian independence techniques.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

To simplify

 $k = \mathbb{F}_q$ and $x \in X(k)$ strictly Galois generic.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

To simplify

 $k = \mathbb{F}_q$ and $x \in X(k)$ strictly Galois generic.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

To simplify

 $k = \mathbb{F}_q$ and $x \in X(k)$ strictly Galois generic.

・ロト ・ 聞 ト ・ ヨ ト ・ ヨ ト

ъ

Galois generic assumption \Rightarrow

 $\mathrm{H}^{0}(X_{\overline{k}}, R^{2}f_{*}\mathbb{Q}_{\ell}(1))^{\pi_{1}(k)} \simeq \mathrm{H}^{2}(Y_{\overline{X}}, \mathbb{Q}_{\ell}(1))^{\pi_{1}(k)}$

To simplify

 $k = \mathbb{F}_q$ and $x \in X(k)$ strictly Galois generic, K = Frac(W(k)), F (power of) absolute Frobenius.

To simplify

 $k = \mathbb{F}_q$ and $x \in X(k)$ strictly Galois generic, K = Frac(W(k)), F (power of) absolute Frobenius.

Crystalline Variational Tate conjecture (Morrow):

 $\mathit{Im}(\mathsf{Pic}(Y) \otimes \mathbb{Q} \to \mathsf{NS}(Y_x) \otimes \mathbb{Q}) = \mathsf{H}^0(X, R^2 \mathit{f_{crys,*}}} \mathfrak{O}_{Y/K}(1))^F \cap \mathsf{NS}(Y_x) \otimes \mathbb{Q}$

Key Proposition (A.)

x strictly Galois generic $\Rightarrow H^0(X, R^2 f_{crys,*} \mathcal{O}_{Y/K}(1))^F \simeq H^2_{crys}(Y_x)(1)^F$

Key Proposition (A.)

x strictly Galois generic $\Rightarrow H^0(X, R^2 f_{crys,*} \mathcal{O}_{Y/K}(1))^F \simeq H^2_{crys}(Y_x)(1)^F$

 $R^{2} f_{crys,*} \mathcal{O}_{Y/K}(1)$ is an F-isocrystal;

Key Proposition (A.)

x strictly Galois generic $\Rightarrow H^0(X, R^2 f_{crys,*} \mathcal{O}_{Y/K}(1))^F \simeq H^2_{crys}(Y_x)(1)^F$

 $R^{2} f_{crys,*} \mathcal{O}_{Y/K}(1)$ is an F-isocrystal;

(日) (日) (日) (日) (日) (日) (日)

Main problem:

Category \mathbf{F} -Isoc(X) of F-isocrystals has a pathological behaviour:

Key Proposition (A.)

x strictly Galois generic $\Rightarrow H^0(X, R^2 f_{crys,*} \mathfrak{O}_{Y/K}(1))^F \simeq H^2_{crys}(Y_x)(1)^F$

 $R^{2} f_{crys,*} \mathcal{O}_{Y/K}(1)$ is an F-isocrystal;

(日) (日) (日) (日) (日) (日) (日)

Main problem:

Category \mathbf{F} -Isoc(X) of F-isocrystals has a pathological behaviour:

Different behaviour from *l*-adic representations;

Key Proposition (A.)

x strictly Galois generic $\Rightarrow H^0(X, R^2 f_{crys,*} \mathfrak{O}_{Y/K}(1))^F \simeq H^2_{crys}(Y_x)(1)^F$

 $R^{2} f_{crys,*} \mathcal{O}_{Y/K}(1)$ is an F-isocrystal;

(日) (日) (日) (日) (日) (日) (日)

Main problem:

Category \mathbf{F} -Isoc(X) of F-isocrystals has a pathological behaviour:

- Different behaviour from *l*-adic representations;
- 2 Infinite dimensional cohomology if X not proper.

Different behaviour from *l*-adic representations

• $f: Y \rightarrow X$ non isotrivial family of elliptic curves;

Different behaviour from *l*-adic representations

- $f: Y \rightarrow X$ non isotrivial family of elliptic curves;
- Z ⊆ X closed supersingular locus (assumed not empty),
 U = X − Z;

Different behaviour from *l*-adic representations

- $f: Y \rightarrow X$ non isotrivial family of elliptic curves;
- Z ⊆ X closed supersingular locus (assumed not empty), U = X − Z;

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

• $\mathcal{E} := R^1 f_{crys,*} \mathcal{O}_{Y/K}$ is irreducible;

Different behaviour from ℓ -adic representations

- $f: Y \rightarrow X$ non isotrivial family of elliptic curves;
- Z ⊆ X closed supersingular locus (assumed not empty),
 U = X − Z;
- $\mathcal{E} := R^1 f_{crys,*} \mathcal{O}_{Y/K}$ is irreducible;
- Its restriction \mathcal{E}_U fits in a exact sequence

$$\mathbf{0} \rightarrow \mathcal{E}_U^{\acute{e}t} \rightarrow \mathcal{E}_U \rightarrow \mathcal{E}_U^0 \rightarrow \mathbf{0};$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

coming from the decomposition of the p-divisible group $Y_{\eta}[p^{\infty}]$.

Different behaviour from ℓ -adic representations

- $f: Y \rightarrow X$ non isotrivial family of elliptic curves;
- Z ⊆ X closed supersingular locus (assumed not empty),
 U = X − Z;
- $\mathcal{E} := R^1 f_{crys,*} \mathcal{O}_{Y/K}$ is irreducible;
- Its restriction \mathcal{E}_U fits in a exact sequence

$$\mathbf{0} \rightarrow \mathcal{E}_U^{\acute{e}t} \rightarrow \mathcal{E}_U \rightarrow \mathcal{E}_U^0 \rightarrow \mathbf{0};$$

(日) (日) (日) (日) (日) (日) (日)

coming from the decomposition of the p-divisible group $Y_{\eta}[p^{\infty}]$.

Pathology (1):

• Restriction to an open of an irreducible is not irreducible;

Different behaviour from ℓ -adic representations

- $f: Y \rightarrow X$ non isotrivial family of elliptic curves;
- Z ⊆ X closed supersingular locus (assumed not empty),
 U = X − Z;
- $\mathcal{E} := R^1 f_{crys,*} \mathcal{O}_{Y/K}$ is irreducible;
- Its restriction \mathcal{E}_U fits in a exact sequence

$$\mathbf{0} \rightarrow \mathcal{E}_U^{\acute{e}t} \rightarrow \mathcal{E}_U \rightarrow \mathcal{E}_U^0 \rightarrow \mathbf{0};$$

coming from the decomposition of the p-divisible group $Y_{\eta}[p^{\infty}]$.

Pathology (1):

Restriction to an open of an irreducible is not irreducible;

• $R^1 f_{U,*} \mathbb{Q}_{\ell}$ is irreducible, while \mathcal{E}_U is not.

If $X := \mathbb{A}^1_{\mathbb{F}_q}$ then $H^1_{crys}(X)$ is of infinite dimension.

If $X := \mathbb{A}^1_{\mathbb{F}_q}$ then $H^1_{crys}(X)$ is of infinite dimension.

$$K\{T\} := \{\sum_{n \ge 0} a_n T^n \text{ such that } \lim_{n \to +\infty} |a_n| \to 0\}$$

If $X := \mathbb{A}^{1}_{\mathbb{F}_{q}}$ then $H^{1}_{crys}(X)$ is of infinite dimension.

$$K\{T\} := \{\sum_{n \ge 0} a_n T^n \text{ such that } \lim_{n \to +\infty} |a_n| \to 0\}$$

 $K{T} = {\text{convergent functions of the analytic closed disc}}$

If $X := \mathbb{A}^{1}_{\mathbb{F}_{q}}$ then $H^{1}_{crys}(X)$ is of infinite dimension.

$$K\{T\} := \{\sum_{n \ge 0} a_n T^n \text{ such that } \lim_{n \to +\infty} |a_n| \to 0\}$$

 $K{T} = {\text{convergent functions of the analytic closed disc}}$

$$d: K\{T\} \rightarrow K\{T\}dT$$
 and $H^1_{crys}(X) \simeq Coker(d)$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

If $X := \mathbb{A}^1_{\mathbb{F}_q}$ then $H^1_{crys}(X)$ is of infinite dimension.

$$K\{T\} := \{\sum_{n \ge 0} a_n T^n \text{ such that } \lim_{n \to +\infty} |a_n| \to 0\}$$

 $K{T} = {\text{convergent functions of the analytic closed disc}}$

$$d: K\{T\} \to K\{T\}dT$$
 and $H^{1}_{crys}(X) \simeq Coker(d)$
 $f = \sum_{n \ge 0} a_n T^n$ and so $\int f = \sum_{n \ge 1} \frac{a_{n-1}}{n} T^n$

▲□▶▲圖▶▲≣▶▲≣▶ = ● ● ●

Pathology (2):

 $\lim_{n\to+\infty} |\frac{a_{n-1}}{n}|$ is in general different from zero, hence coker(d) is huge!

◆□ ▶ ◆□ ▶ ★ □ ▶ ★ □ ▶ ↓ □ ● ○ ○ ○ ○

Pathology (2):

 $\lim_{n\to+\infty} |\frac{a_{n-1}}{n}|$ is in general different from zero, hence coker(d) is huge!

Solution (Monsky–Washnitzer, Berthelot)

Replace $K{T}$ with

$$\mathcal{K}{T}^{\dagger} := {\sum_{n \ge 0} a_n T^n \text{ exists } c > 1 \text{ with } \lim_{n \to +\infty} |a_n| c^n \to 0}$$

(日) (日) (日) (日) (日) (日) (日)

Pathology (2):

 $\lim_{n\to+\infty} |\frac{a_{n-1}}{n}|$ is in general different from zero, hence coker(d) is huge!

Solution (Monsky–Washnitzer, Berthelot)

Replace $K{T}$ with

$$\mathcal{K}{T}^{\dagger} := {\sum_{n \ge 0} a_n T^n \text{ exists } c > 1 \text{ with } \lim_{n \to +\infty} |a_n| c^n \to 0}$$

(日) (日) (日) (日) (日) (日) (日)

functions on some analytic open neighbourhood of the disc

Overconvergent F-isocrystals

• **F**-**Isoc**[†](*X*) category overconvergent F-isocrystals;

- **F**-**Isoc**[†](*X*) category overconvergent F-isocrystals;
- **F**-lsoc[†](*X*) behaves like the category of ℓ -adic representations:

(日) (日) (日) (日) (日) (日) (日)

- **F**-**Isoc**[†](*X*) category overconvergent F-isocrystals;
- F-Isoc[†](X) behaves like the category of ℓ-adic representations:
 finite dimensional cohomology (Kedlaya);

(日) (日) (日) (日) (日) (日) (日)

- **F**-**Isoc**[†](*X*) category overconvergent F-isocrystals;
- **F**-lsoc[†](*X*) behaves like the category of ℓ -adic representations:

- finite dimensional cohomology (Kedlaya);
- theory of weights (Kedlaya, Abe-Caro);

- **F**-**Isoc**[†](*X*) category overconvergent F-isocrystals;
- **F**-lsoc[†](*X*) behaves like the category of ℓ -adic representations:

- finite dimensional cohomology (Kedlaya);
- theory of weights (Kedlaya, Abe-Caro);
- trace formula (Etesse, Le Stum);

- **F**-**Isoc**[†](*X*) category overconvergent F-isocrystals;
- **F**-lsoc[†](*X*) behaves like the category of ℓ -adic representations:

- finite dimensional cohomology (Kedlaya);
- theory of weights (Kedlaya, Abe-Caro);
- trace formula (Etesse, Le Stum);
- global monodromy theorem (Crew, Kedlaya).

 There is a functor Forg : F-Isoc[†](X) → F-Isoc(X) (Berthelot-Ogus);

 There is a functor Forg : F-Isoc[†](X) → F-Isoc(X) (Berthelot-Ogus);

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

• Forg is fully faithful (Kedlaya);

- There is a functor Forg : F-Isoc[†](X) → F-Isoc(X) (Berthelot-Ogus);
- Forg is fully faithful (Kedlaya);

Proposition (A.)

 $f: Y \to X$ smooth and proper, $R^i f_{crys,*} O_{Y/K}$ is the image of a $R^i f_* O_{Y/K}^{\dagger} \in \mathbf{F}$ -lsoc[†](X).

Fact

- There is a functor Forg : F-lsoc[†](X) → F-lsoc(X) (Berthelot-Ogus);
- Forg is fully faithful (Kedlaya);

Proposition (A.)

 $f: Y \to X$ smooth and proper, $R^i f_{crys,*} O_{Y/K}$ is the image of a $R^i f_* O_{Y/K}^{\dagger} \in \mathbf{F}$ -lsoc[†](X).

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Consequence:

Enough to compare $R^2 f_* O^{\dagger}_{Y/K}(1)$ and $R^2 f_* \mathbb{Q}_{\ell}(1)$.

• Isoc[†](Spec(\mathbb{F}_q)) \simeq Vect_K;

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

- Isoc[†](Spec(\mathbb{F}_q)) \simeq Vect_K;
- x^* : F-lsoc[†](X) \rightarrow Vect_K;

- Isoc[†](Spec(\mathbb{F}_q)) \simeq Vect_K;
- x^* : F-lsoc[†](X) \rightarrow Vect_K;
- **F**-lsoc[†](*X*) neutral Tannakian category with fibre functor *x*^{*};

- $\mathsf{Isoc}^{\dagger}(\mathsf{Spec}(\mathbb{F}_q)) \simeq \mathit{Vect}_K;$
- x^* : F-lsoc[†](X) \rightarrow Vect_K;
- **F-Isoc**[†](*X*) neutral Tannakian category with fibre functor *x*^{*};

•
$$R^2 f_* \mathcal{O}_{Y/K}^{\dagger}(1) := \mathcal{E};$$

- $\mathsf{Isoc}^{\dagger}(\mathsf{Spec}(\mathbb{F}_q)) \simeq \mathit{Vect}_K;$
- x^* : F-lsoc[†](X) \rightarrow Vect_K;
- **F-Isoc**[†](*X*) neutral Tannakian category with fibre functor x^* ;

(日) (日) (日) (日) (日) (日) (日)

- $R^2 f_* \mathcal{O}^{\dagger}_{Y/K}(1) := \mathcal{E};$
- $< \varepsilon >$ smallest Tannakian category containing ε ;

From representations to overconvergent F-isocrystals

- $\mathsf{Isoc}^{\dagger}(\mathsf{Spec}(\mathbb{F}_q)) \simeq \mathit{Vect}_{\mathcal{K}};$
- x^* : **F**-lsoc[†](X) \rightarrow Vect_K;
- **F-Isoc**[†](*X*) neutral Tannakian category with fibre functor x^* ;

(日) (日) (日) (日) (日) (日) (日)

- $R^2 f_* \mathcal{O}^{\dagger}_{Y/K}(1) := \mathcal{E};$
- $< \varepsilon >$ smallest Tannakian category containing ε ;
- Tannakian group $G(\mathcal{E})$;

From representations to overconvergent F-isocrystals

- $\mathsf{Isoc}^{\dagger}(\mathsf{Spec}(\mathbb{F}_q)) \simeq \mathit{Vect}_{\mathcal{K}};$
- x^* : **F**-lsoc[†](X) \rightarrow Vect_K;
- **F**-lsoc[†](X) neutral Tannakian category with fibre functor x^* ;

(日) (日) (日) (日) (日) (日) (日)

- $R^2 f_* \mathcal{O}^{\dagger}_{Y/K}(1) := \mathcal{E};$
- $< \mathcal{E} >$ smallest Tannakian category containing \mathcal{E} ;
- Tannakian group G(ε);
- Inclusion $G(x^*\mathcal{E}) \subseteq G(\mathcal{E});$

From representations to overconvergent F-isocrystals

- $\mathsf{Isoc}^{\dagger}(\mathsf{Spec}(\mathbb{F}_q)) \simeq \mathit{Vect}_K;$
- x^* : **F**-lsoc[†](X) \rightarrow Vect_K;
- **F**-lsoc[†](X) neutral Tannakian category with fibre functor x^* ;

A D M A

- $R^2 f_* \mathcal{O}^{\dagger}_{Y/K}(1) := \mathcal{E};$
- $< \mathcal{E} >$ smallest Tannakian category containing \mathcal{E} ;
- Tannakian group G(E);
- Inclusion $G(x^*\mathcal{E}) \subseteq G(\mathcal{E})$;
- Enough to show: $G(x^*\mathcal{E}) = G(\mathcal{E})$.

Independence

• $\mathcal{F} := R^2 f_* \mathbb{Q}_{\ell}(1);$

| ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ● ●

- $\mathcal{F} := R^2 f_* \mathbb{Q}_{\ell}(1);$
- $< \mathfrak{F} >$ Tannakian category with Tannakian group $G(\mathfrak{F})$.

- $\mathcal{F} := R^2 f_* \mathbb{Q}_{\ell}(1);$
- $< \mathfrak{F} >$ Tannakian category with Tannakian group $G(\mathfrak{F})$.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

•
$$G(\mathcal{F}) = \overline{\Pi}_{\ell}^{Zar}, G(x^*\mathcal{F}) = \overline{\Pi}_{\ell,x}^{Zar}.$$

- $\mathcal{F} := R^2 f_* \mathbb{Q}_{\ell}(1);$
- $< \mathfrak{F} >$ Tannakian category with Tannakian group $G(\mathfrak{F})$.

- $G(\mathcal{F}) = \overline{\Pi}_{\ell}^{Zar}, G(x^*\mathcal{F}) = \overline{\Pi}_{\ell,x}^{Zar}.$
- Galois generic assumption \Rightarrow $G(x^*\mathcal{F}) = G(\mathcal{F})$.

- $\mathcal{F} := R^2 f_* \mathbb{Q}_{\ell}(1);$
- $< \mathfrak{F} >$ Tannakian category with Tannakian group $G(\mathfrak{F})$.
- $G(\mathfrak{F}) = \overline{\Pi}_{\ell}^{Zar}, G(x^*\mathfrak{F}) = \overline{\Pi}_{\ell,x}^{Zar}.$
- Galois generic assumption \Rightarrow $G(x^*\mathfrak{F}) = G(\mathfrak{F})$.

Proposition

$$G(x^*\mathcal{F}) = G(\mathcal{F})$$
 if and only if $G(x^*\mathcal{E}) = G(\mathcal{E})$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

To summarize:

l
l
L
l
L
l
l
L
l
 į.

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 …のへで

To summarize:

Two categories of p-adic local systems:

To summarize:

Two categories of p-adic local systems:

To summarize:

Two categories of p-adic local systems:

- Overconvergent F-isocrystals:
 - Nice behaviour;

To summarize:

Two categories of p-adic local systems:

- Overconvergent F-isocrystals:
 - Nice behaviour;
 - Comparable with the category of ℓ -adic local systems.

To summarize:

Two categories of p-adic local systems:

- Overconvergent F-isocrystals:
 - Nice behaviour;
 - Comparable with the category of ℓ -adic local systems.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Ø F-isocrystals:

To summarize:

Two categories of p-adic local systems:

- Overconvergent F-isocrystals:
 - Nice behaviour;
 - $\bullet\,$ Comparable with the category of $\ell\text{-adic local systems.}$

- Ø F-isocrystals:
 - Pathological behaviour;

To summarize:

Two categories of p-adic local systems:

- Overconvergent F-isocrystals:
 - Nice behaviour;
 - Comparable with the category of ℓ -adic local systems.

- P-isocrystals:
 - Pathological behaviour;
 - Control finer p-adic and geometric information.

To summarize:

Two categories of p-adic local systems:

- Overconvergent F-isocrystals:
 - Nice behaviour;
 - Comparable with the category of ℓ -adic local systems.
- F-isocrystals:
 - Pathological behaviour;
 - Control finer p-adic and geometric information.

Idea:

Compare F-lsoc[†](X) and F-lsoc(X) to exploit the nice behaviour of F-lsoc[†](X);

To summarize:

Two categories of p-adic local systems:

- Overconvergent F-isocrystals:
 - Nice behaviour;
 - Comparable with the category of ℓ -adic local systems.
- F-isocrystals:
 - Pathological behaviour;
 - Control finer p-adic and geometric information.

Idea:

- Compare F-Isoc[†](X) and F-Isoc(X) to exploit the nice behaviour of F-Isoc[†](X);
- Use **F**-**Isoc**(*X*) to obtain *p*-adic and geometric information.

• *F* function field over $\overline{\mathbb{F}}_q$, *F*^{perf} perfection;

- *F* function field over $\overline{\mathbb{F}}_q$, F^{perf} perfection;
- A abelian variety /F without isotrivial isogeny factors.

イロト イポト イヨト イヨト ヨー のくや

- *F* function field over $\overline{\mathbb{F}}_q$, *F*^{perf} perfection;
- A abelian variety /F without isotrivial isogeny factors.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Fact (Lang-Néron)

A(F) is a finitely generated abelian group.

- *F* function field over $\overline{\mathbb{F}}_q$, F^{perf} perfection;
- A abelian variety /F without isotrivial isogeny factors.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Fact (Lang-Néron)

A(F) is a finitely generated abelian group.

Question

What about $A(F^{perf})$?

- *F* function field over $\overline{\mathbb{F}}_q$, F^{perf} perfection;
- A abelian variety /F without isotrivial isogeny factors.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Fact (Lang-Néron)

A(F) is a finitely generated abelian group.

Question

What about $A(F^{perf})$?

Remark

In general $A(F^{\text{perf}})$ is not finitely generated.

- *F* function field over $\overline{\mathbb{F}}_q$, F^{perf} perfection;
- A abelian variety /F without isotrivial isogeny factors.

Fact (Lang-Néron)

A(F) is a finitely generated abelian group.

Question

What about $A(F^{perf})$?

Remark

In general $A(F^{\text{perf}})$ is not finitely generated.

Question (Esnault)

Is A(F^{perf})_{tors} finite?

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Theorem 4 (A.-D'Addezio)

 $A(F^{\text{perf}})_{\text{tors}}$ is finite.

Theorem 4 (A.-D'Addezio)

 $A(F^{\text{perf}})_{\text{tors}}$ is finite.

Remarks

If ℓ ≠ p, A(F^{perf})[ℓ[∞]] = A(F)[ℓ[∞]] ⇒ enough to show A(F^{perf})[p[∞]] is finite;

Theorem 4 (A.-D'Addezio)

 $A(F^{\text{perf}})_{\text{tors}}$ is finite.

Remarks

- If ℓ ≠ p, A(F^{perf})[ℓ[∞]] = A(F)[ℓ[∞]] ⇒ enough to show A(F^{perf})[p[∞]] is finite;
- $|A(F^{\text{perf}})[p^{\infty}]|$ finite $\Leftrightarrow \text{Hom}_{F^{\text{perf}}}(\mathbb{Q}_p/\mathbb{Z}_p, A[p^{\infty}]) = 0;$

Theorem 4 (A.-D'Addezio)

 $A(F^{\text{perf}})_{\text{tors}}$ is finite.

Remarks

- If ℓ ≠ p, A(F^{perf})[ℓ[∞]] = A(F)[ℓ[∞]] ⇒ enough to show A(F^{perf})[p[∞]] is finite;
- $|A(F^{\text{perf}})[p^{\infty}]|$ finite $\Leftrightarrow \text{Hom}_{F^{\text{perf}}}(\mathbb{Q}_p/\mathbb{Z}_p, A[p^{\infty}]) = 0;$
- ∃ exact sequence *p*-divisible groups

$$0 o A[\rho^{\infty}]^0 o A[\rho^{\infty}] o A[\rho^{\infty}]^{\acute{e}t} o 0;$$
 (1)

Theorem 4 (A.-D'Addezio)

 $A(F^{\text{perf}})_{\text{tors}}$ is finite.

Remarks

- If ℓ ≠ p, A(F^{perf})[ℓ[∞]] = A(F)[ℓ[∞]] ⇒ enough to show A(F^{perf})[p[∞]] is finite;
- $|A(F^{\mathrm{perf}})[p^{\infty}]|$ finite $\Leftrightarrow \operatorname{Hom}_{F^{\mathrm{perf}}}(\mathbb{Q}_p/\mathbb{Z}_p, A[p^{\infty}]) = 0;$
- ∃ exact sequence *p*-divisible groups

$$0 o A[p^{\infty}]^0 o A[p^{\infty}] o A[p^{\infty}]^{\acute{e}t} o 0;$$
 (1)

• (1) splits over $F^{\text{perf}} \Rightarrow$ Hom_{*F*^{perf}}($\mathbb{Q}_p/\mathbb{Z}_p, A[p^{\infty}]$) = Hom_{*F*^{perf}}($\mathbb{Q}_p/\mathbb{Z}_p, A[p^{\infty}]^{\text{ét}}$);

Remarks

• $A[p^{\infty}]^{\acute{e}t}$ étale \Rightarrow Hom_{*F*perf} $(\mathbb{Q}_p/\mathbb{Z}_p, A[p^{\infty}]^{\acute{e}t}) = \operatorname{Hom}_F(\mathbb{Q}_p/\mathbb{Z}_p, A[p^{\infty}]^{\acute{e}t});$

Remarks

• $A[p^{\infty}]^{\text{ét}}$ étale \Rightarrow Hom_{*F*perf}($\mathbb{Q}_p/\mathbb{Z}_p, A[p^{\infty}]^{\text{ét}}$) = Hom_{*F*}($\mathbb{Q}_p/\mathbb{Z}_p, A[p^{\infty}]^{\text{ét}}$);

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

• Theorem 4 holds \Leftrightarrow Hom_{*F*}($\mathbb{Q}_{p}/\mathbb{Z}_{p}$, *A*[p^{∞}]^{ét}) = 0

Remarks

• $A[p^{\infty}]^{\text{ét}}$ étale \Rightarrow Hom_{*F*perf}($\mathbb{Q}_p/\mathbb{Z}_p, A[p^{\infty}]^{\text{ét}}$) = Hom_{*F*}($\mathbb{Q}_p/\mathbb{Z}_p, A[p^{\infty}]^{\text{ét}}$);

- Theorem 4 holds \Leftrightarrow Hom_{*F*}($\mathbb{Q}_{p}/\mathbb{Z}_{p}$, *A*[p^{∞}]^{ét}) = 0
- Lang-Néron \Rightarrow Hom_{*F*}($\mathbb{Q}_{\rho}/\mathbb{Z}_{\rho}, A[\rho^{\infty}]$) = 0

Remarks

- $A[p^{\infty}]^{\text{ét}}$ étale \Rightarrow Hom_{*F*perf}($\mathbb{Q}_{p}/\mathbb{Z}_{p}, A[p^{\infty}]^{\text{ét}}$) = Hom_{*F*}($\mathbb{Q}_{p}/\mathbb{Z}_{p}, A[p^{\infty}]^{\text{ét}}$);
- Theorem 4 holds \Leftrightarrow Hom_{*F*}($\mathbb{Q}_{p}/\mathbb{Z}_{p}$, *A*[p^{∞}]^{ét}) = 0
- Lang-Néron \Rightarrow Hom_{*F*}($\mathbb{Q}_{p}/\mathbb{Z}_{p}, A[p^{\infty}]$) = 0

Theorem 4'(A. D'Addezio)

The natural map $\operatorname{Hom}_{\mathcal{F}}(\mathbb{Q}_p/\mathbb{Z}_p, A[p^{\infty}]) \to \operatorname{Hom}_{\mathcal{F}}(\mathbb{Q}_p/\mathbb{Z}_p, A[p^{\infty}]^{\operatorname{\acute{e}t}})$ is surjective up to isogeny.

Remarks

- $A[p^{\infty}]^{\text{ét}}$ étale \Rightarrow Hom_{*F*perf}($\mathbb{Q}_{p}/\mathbb{Z}_{p}, A[p^{\infty}]^{\text{ét}}$) = Hom_{*F*}($\mathbb{Q}_{p}/\mathbb{Z}_{p}, A[p^{\infty}]^{\text{ét}}$);
- Theorem 4 holds \Leftrightarrow Hom_{*F*}($\mathbb{Q}_{p}/\mathbb{Z}_{p}$, *A*[p^{∞}]^{ét}) = 0
- Lang-Néron \Rightarrow Hom_{*F*}($\mathbb{Q}_{p}/\mathbb{Z}_{p}, A[p^{\infty}]$) = 0

Theorem 4'(A. D'Addezio)

The natural map $\operatorname{Hom}_{\mathcal{F}}(\mathbb{Q}_p/\mathbb{Z}_p, A[p^{\infty}]) \to \operatorname{Hom}_{\mathcal{F}}(\mathbb{Q}_p/\mathbb{Z}_p, A[p^{\infty}]^{\operatorname{\acute{e}t}})$ is surjective up to isogeny.

Main problem:

(1) DOES NOT split over F.

Spreading out and Dieudonné theory

• $f: Y \to X$ nice model/ \mathbb{F}_q of A/F;

Spreading out and Dieudonné theory

- $f: Y \to X$ nice model/ \mathbb{F}_q of A/F;
- Fully faithful controvariant functor (Berthelot, Breen, Messing)

 $\mathbb{D}: p - div(X)_{\mathbb{Q}} \to \mathbf{F}\operatorname{-}\mathbf{Isoc}(X)$

Spreading out and Dieudonné theory

- $f: Y \to X$ nice model/ \mathbb{F}_q of A/F;
- Fully faithful controvariant functor (Berthelot, Breen, Messing)

$$\mathbb{D}: \rho - div(X)_{\mathbb{Q}} \to \mathbf{F}\operatorname{-}\mathbf{Isoc}(X)$$

• $\mathcal{E} := R^1 f_{crys,*} \mathfrak{O}_{Y/K}$ fits in a exact sequence

$$\mathbf{0} \rightarrow \mathcal{E}^{\acute{e}t} \rightarrow \mathcal{E} \rightarrow \mathcal{E}^{\mathbf{0}} \rightarrow \mathbf{0};$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

coming from (1).

Spreading out and Dieudonné theory

- $f: Y \to X$ nice model/ \mathbb{F}_q of A/F;
- Fully faithful controvariant functor (Berthelot, Breen, Messing)

$$\mathbb{D}: \rho - div(X)_{\mathbb{Q}} \to \mathbf{F}\operatorname{-}\mathbf{Isoc}(X)$$

• $\mathcal{E} := R^1 f_{crys,*} \mathfrak{O}_{Y/K}$ fits in a exact sequence

$$\mathbf{0} \rightarrow \mathcal{E}^{\acute{e}t} \rightarrow \mathcal{E} \rightarrow \mathcal{E}^{\mathbf{0}} \rightarrow \mathbf{0};$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

coming from (1).

•
$$\mathbb{D}(Y[p^{\infty}]) = \mathcal{E}$$
 and $\mathbb{D}(Y[p^{\infty}]^{\acute{e}t}) = \mathcal{E}^{\acute{e}t}$

Theorem 4" (A.-D'Addezio)

$$\mathsf{Hom}_{\mathsf{Isoc}(X)}(\mathcal{E}, \mathfrak{O}_X) o \mathsf{Hom}_{\mathsf{Isoc}(X)}(\mathcal{E}^{\mathrm{\acute{e}t}}, \mathfrak{O}_X)$$

イロト イポト イヨト イヨト ヨー のくや

is surjective.

Theorem 4" (A.-D'Addezio)

$$\mathsf{Hom}_{\mathsf{Isoc}(X)}(\mathcal{E}, \mathfrak{O}_X) o \mathsf{Hom}_{\mathsf{Isoc}(X)}(\mathcal{E}^{\mathrm{\acute{e}t}}, \mathfrak{O}_X)$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

is surjective.

Main ideas:

• \mathcal{E} image of a \mathcal{E}^{\dagger} via **F-Isoc**^{\dagger}(X) \rightarrow **F-Isoc**(X) (Etesse);

Theorem 4" (A.-D'Addezio)

$$\mathsf{Hom}_{\mathsf{Isoc}(X)}(\mathcal{E}, \mathbb{O}_X) o \mathsf{Hom}_{\mathsf{Isoc}(X)}(\mathcal{E}^{\mathrm{\acute{e}t}}, \mathbb{O}_X)$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

is surjective.

Main ideas:

- \mathcal{E} image of a \mathcal{E}^{\dagger} via **F-Isoc**^{\dagger}(X) \rightarrow **F-Isoc**(X) (Etesse);
- \mathcal{E}^{\dagger} is semisimple in **F**-lsoc^{\dagger}(*X*);

Theorem 4" (A.-D'Addezio)

$$\mathsf{Hom}_{\mathsf{Isoc}(X)}(\mathcal{E}, \mathbb{O}_X) o \mathsf{Hom}_{\mathsf{Isoc}(X)}(\mathcal{E}^{\mathrm{\acute{e}t}}, \mathbb{O}_X)$$

is surjective.

Main ideas:

- \mathcal{E} image of a \mathcal{E}^{\dagger} via **F-Isoc**^{\dagger}(X) \rightarrow **F-Isoc**(X) (Etesse);
- \mathcal{E}^{\dagger} is semisimple in **F**-**Isoc**^{\dagger}(*X*);
- Transfer this information comparing the (maximal tori in the) monodromy groups of E[†] and E.

THANK YOU FOR THE ATTENTION!

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト ・ シ へ つ ヘ