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Cohomological invariants:

k = C, singular cohomology Hi(Y (C),Q), with Hodge filtration;
k arbitrary, ` 6= p prime, `-adic étale cohomology Hi(Yk ,Q`), with
action of Gal(k |k) := π1(k);
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cohomology, with action of Frobenius;

Cycle class map

cY : CHi(Y )⊗Q→ H2i(Y ) relates geometry to cohomology.
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Invariants of varieties

Question
How do the invariants of Yx and Yx vary with x ∈ X?

Dimensions of Hi(Yx (C),Q), Hi(Yx ,Q`), Hi
crys(Yx ), Hi

rig(Yx )
independent of x ∈ X ;
Extra structures (Hodge filtrations, Galois actions, Frobenius
actions) can be very different!
Also NS(Yx )⊗Q, Pic(Yx )⊗Q, CHi(Yx )⊗Q vary.
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Injective specialization morphism:

spη,x : NS(Yη)⊗Q ↪→ NS(Yx )⊗Q;

Arithmetic variant:

spar
η,x : NS(Yη)⊗Q ↪→ NS(Yx )⊗Q.

Definition
x NS-generic (resp. arithmetically NS-generic) if spη,x (resp. spar

η,x )
isomorphism.
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Can we describe the set of (arithmetically) NS-generic closed
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Is the set of (arithmetically) NS-generic closed points not empty?

The answers depend on the arithmetic of k .
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Example 2
Y ⊆ Pn of dimension ≥ 3;

{Yx}x∈X nice pencil hyperplane sections Yx ⊆ Y ;
x arithmetically NS-generic⇔ NS(Yx )⊗Q ' NS(Y )⊗Q.

Example 2.0

Veronese’s embedding of degree 2

P3
k → P9

k

[x : y : z : w ] 7→ [x2 : y2 : z2 : w2 : xy : xz : xw : yz : yw : zw ];

Hyperplane section Yx ↔ Quadric Qx ⊆ P3;
k = k ⇒ Qx ' P1 × P1,

NS(Qx )⊗Q ' Q×Q, while NS(P3)⊗Q ' Q.
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Theorem 1 (A.)
p > 0, k infinite finitely generated (i.e. k = Fp(T1, ...,Tn))⇒

1 ∃ infinitely many arithmetically NS-generic points of (higher
enough) bounded degree;

2 X curve⇒ all but finitely many x ∈ X (k) NS-generic.

Remark (p=0)
If p = 0:

1 is due to André;
2 is due to Cadoret-Tamagawa.
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Inclusion of `-adic Lie groups

ρ`(π1(k(x))) =: Π`,x ⊆ Π` := ρ`(π1(X ))
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Galois generic points

Definition
x Galois generic (resp. strictly Galois generic) if [Π` : Π`,x ] < +∞
(resp. Π`,x = Π`)

Proposition (Serre)
k infinite finitely generated⇒ ∃ infinitely many strictly Galois generic
points of (higher enough) bounded degree.

Theorem 2 (A.)
p > 0, k finitely generated, X curve⇒ all but finitely many x ∈ X (k)
Galois generic.

Remark (p=0)
If p = 0 Theorem 2 is due to Cadoret-Tamagawa.
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Proof of Theorem 2

Anabelian dictionary
U ⊆ Π` open subgroup↔ connected étale cover XU → X

Π`,x ⊆ U ⇔ k(x)
x−→ X lifts to a k(x)-rational point of XU .

XU

k(x) Xx

∃

Construction (Cadoret-Tamagawa)
∃ projective system hn : Xn → X of étale covers such that Theorem 2
holds

⇔ Im(lim←−
n

(Xn(k))→ X (k)) finite
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Proof of Theorem 2

Mordell conjecture (Samuel-Voloch)
Genus gXn of Xn � 0⇒ Xn(k) finite.

Key Proposition (A.)

lim
n 7→+∞

gXn = +∞.

Main ingredients:

Riemann-Hurwitz formula;
Study of wild ramification;
`-adic Lie groups theory.
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1 Different behaviour from `-adic representations;
2 Infinite dimensional cohomology if X not proper.
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Different behaviour from `-adic representations

f : Y → X non isotrivial family of elliptic curves;

Z ⊆ X closed supersingular locus (assumed not empty),
U = X − Z ;
E := R1fcrys,∗OY/K is irreducible;
Its restriction EU fits in a exact sequence

0→ Eét
U → EU → E0

U → 0;

coming from the decomposition of the p-divisible group Yη[p∞].

Pathology (1):

Restriction to an open of an irreducible is not irreducible;
R1fU,∗Q` is irreducible, while EU is not.
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Infinite dimensional cohomology

If X := A1
Fq

then H1
crys(X ) is of infinite dimension.

K{T} := {
∑
n≥0

anT n such that lim
n→+∞

|an| → 0}

K{T} = {convergent functions of the analytic closed disc}

d : K{T} → K{T}dT and H1
crys(X ) ' Coker(d)

f =
∑
n≥0

anT n and so
∫

f =
∑
n≥1

an−1

n
T n
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Pathology (2):

limn→+∞ |an−1
n | is in general different from zero, hence coker(d) is

huge!

Solution (Monsky–Washnitzer, Berthelot)
Replace K{T} with

K{T}† := {
∑
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anT n exists c > 1 with lim
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|an|cn → 0}

functions on some analytic open neighbourhood of the disc
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F-Isoc†(X ) category overconvergent F-isocrystals;

F-Isoc†(X ) behaves like the category of `-adic representations:

finite dimensional cohomology (Kedlaya);
theory of weights (Kedlaya, Abe-Caro);
trace formula (Etesse, Le Stum);
global monodromy theorem (Crew, Kedlaya).



Overconvergent F-isocrystals

F-Isoc†(X ) category overconvergent F-isocrystals;

F-Isoc†(X ) behaves like the category of `-adic representations:

finite dimensional cohomology (Kedlaya);
theory of weights (Kedlaya, Abe-Caro);
trace formula (Etesse, Le Stum);
global monodromy theorem (Crew, Kedlaya).



Overconvergent F-isocrystals

F-Isoc†(X ) category overconvergent F-isocrystals;

F-Isoc†(X ) behaves like the category of `-adic representations:
finite dimensional cohomology (Kedlaya);

theory of weights (Kedlaya, Abe-Caro);
trace formula (Etesse, Le Stum);
global monodromy theorem (Crew, Kedlaya).



Overconvergent F-isocrystals

F-Isoc†(X ) category overconvergent F-isocrystals;

F-Isoc†(X ) behaves like the category of `-adic representations:
finite dimensional cohomology (Kedlaya);
theory of weights (Kedlaya, Abe-Caro);

trace formula (Etesse, Le Stum);
global monodromy theorem (Crew, Kedlaya).



Overconvergent F-isocrystals

F-Isoc†(X ) category overconvergent F-isocrystals;

F-Isoc†(X ) behaves like the category of `-adic representations:
finite dimensional cohomology (Kedlaya);
theory of weights (Kedlaya, Abe-Caro);
trace formula (Etesse, Le Stum);

global monodromy theorem (Crew, Kedlaya).



Overconvergent F-isocrystals

F-Isoc†(X ) category overconvergent F-isocrystals;

F-Isoc†(X ) behaves like the category of `-adic representations:
finite dimensional cohomology (Kedlaya);
theory of weights (Kedlaya, Abe-Caro);
trace formula (Etesse, Le Stum);
global monodromy theorem (Crew, Kedlaya).



From crystals to overconvergent F-isocrystals

Fact
There is a functor Forg : F-Isoc†(X )→ F-Isoc(X )
(Berthelot-Ogus);

Forg is fully faithful (Kedlaya);

Proposition (A.)
f : Y → X smooth and proper, Rifcrys,∗OY/K is the image of a
Rif∗O

†
Y/K ∈ F-Isoc†(X ).

Consequence:

Enough to compare R2f∗O
†
Y/K (1) and R2f∗Q`(1).
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Isoc†(Spec(Fq)) ' VectK ;

x∗ : F-Isoc†(X )→ VectK ;
F-Isoc†(X ) neutral Tannakian category with fibre functor x∗;

R2f∗O
†
Y/K (1) := E;

< E > smallest Tannakian category containing E;
Tannakian group G(E);
Inclusion G(x∗E) ⊆ G(E);
Enough to show: G(x∗E) = G(E).
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Independence

F := R2f∗Q`(1);

< F > Tannakian category with Tannakian group G(F).

G(F) = Π
Zar
` , G(x∗F) = Π

Zar
`,x .

Galois generic assumption⇒ G(x∗F) = G(F).

Proposition
G(x∗F) = G(F) if and only if G(x∗E) = G(E)
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Summary

To summarize:

Two categories of p-adic local systems:

1 Overconvergent F-isocrystals:

Nice behaviour;
Comparable with the category of `-adic local systems.

2 F-isocrystals:

Pathological behaviour;
Control finer p-adic and geometric information.

Idea:

Compare F-Isoc†(X ) and F-Isoc(X ) to exploit the nice behaviour
of F-Isoc†(X );
Use F-Isoc(X ) to obtain p-adic and geometric information.
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F function field over Fq, F perf perfection;

A abelian variety /F without isotrivial isogeny factors.
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A(F ) is a finitely generated abelian group.

Question
What about A(F perf)?

Remark
In general A(F perf) is not finitely generated.

Question (Esnault)
Is A(F perf)tors finite?
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Perfect p-torsion of abelian varieties (joint with
D’Addezio)

Theorem 4 (A.-D’Addezio)
A(F perf)tors is finite.

Remarks

If ` 6= p, A(F perf)[`∞] = A(F )[`∞]⇒ enough to show A(F perf)[p∞]
is finite;
|A(F perf)[p∞]| finite⇔ HomF perf(Qp/Zp,A[p∞]) = 0;
∃ exact sequence p-divisible groups

0→ A[p∞]0 → A[p∞]→ A[p∞]ét → 0; (1)

(1) splits over F perf ⇒
HomF perf(Qp/Zp,A[p∞]) = HomF perf(Qp/Zp,A[p∞]ét);
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Remarks
A[p∞]ét étale⇒
HomF perf(Qp/Zp,A[p∞]ét) = HomF (Qp/Zp,A[p∞]ét);

Theorem 4 holds⇔ HomF (Qp/Zp,A[p∞]ét) = 0
Lang-Néron⇒ HomF (Qp/Zp,A[p∞]) = 0

Theorem 4’(A. D’Addezio)
The natural map HomF (Qp/Zp,A[p∞])→ HomF (Qp/Zp,A[p∞]ét) is
surjective up to isogeny.

Main problem:
(1) DOES NOT split over F .
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Perfect p-torsion of abelian varieties (joint with
D’Addezio)

Spreading out and Dieudonné theory
f : Y → X nice model/Fq of A/F ;

Fully faithful controvariant functor (Berthelot, Breen, Messing)

D : p − div(X )Q → F-Isoc(X )

E := R1fcrys,∗OY/K fits in a exact sequence

0→ Eét → E→ E0 → 0;

coming from (1).
D(Y [p∞]) = E and D(Y [p∞]ét) = Eét
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f : Y → X nice model/Fq of A/F ;
Fully faithful controvariant functor (Berthelot, Breen, Messing)

D : p − div(X )Q → F-Isoc(X )

E := R1fcrys,∗OY/K fits in a exact sequence

0→ Eét → E→ E0 → 0;

coming from (1).

D(Y [p∞]) = E and D(Y [p∞]ét) = Eét



Perfect p-torsion of abelian varieties (joint with
D’Addezio)

Spreading out and Dieudonné theory
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Theorem 4” (A.-D’Addezio)

HomIsoc(X)(E,OX )→ HomIsoc(X)(E
ét,OX )

is surjective.

Main ideas:

E image of a E† via F-Isoc†(X )→ F-Isoc(X ) (Etesse);
E† is semisimple in F-Isoc†(X );
Transfer this information comparing the (maximal tori in the)
monodromy groups of E† and E.
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