An explicit bound on *ℓ*-primary torsion of one dimensional families of abelian varieties in positive characteristic

> Emiliano Ambrosi

Statement

Abstract modular curves

Genus and gonality

Controlling the gonality An explicit bound on ℓ-primary torsion of one dimensional families of abelian varieties in positive characteristic

Emiliano Ambrosi

Explicit and computational approaches to Galois representations, Luxembourg 4 July 2018

(ロ) (同) (三) (三) (三) (○) (○)

An explicit bound on ℓ-primary torsion of one dimensional families of abelian varieties in positive characteristic

> Emiliano Ambrosi

Statement

Abstract modular curves

Genus and gonality

Controlling the gonality • *k* infinite finitely generated field , char(k) = p > 0 (e.g. $\mathbb{F}_{p}(T)$);

An explicit bound on ℓ-primary torsion of one dimensional families of abelian varieties in positive characteristic

> Emiliano Ambrosi

Statement

Abstract modular curves

Genus and gonality

Controlling the gonality • *k* infinite finitely generated field , char(k) = p > 0 (e.g. $\mathbb{F}_{p}(T)$);

▲□▶▲□▶▲□▶▲□▶ □ のQ@

• $\ell \neq p$ a prime (for simplicity $\ell \geq 3$);

An explicit bound on ℓ-primary torsion of one dimensional families of abelian varieties in positive characteristic

> Emiliano Ambrosi

Statement

Abstract modular curves

Genus and gonality

Controlling the gonality • *k* infinite finitely generated field , char(k) = p > 0 (e.g. $\mathbb{F}_{p}(T)$);

- $\ell \neq p$ a prime (for simplicity $\ell \geq 3$);
- X smooth geometrically connected *k*-curve;

An explicit bound on ℓ-primary torsion of one dimensional families of abelian varieties in positive characteristic

> Emiliano Ambrosi

Statement

Abstract modular curves

Genus and gonality

Controlling the gonality • *k* infinite finitely generated field , char(k) = p > 0 (e.g. $\mathbb{F}_{p}(T)$);

- $\ell \neq p$ a prime (for simplicity $\ell \geq 3$);
- X smooth geometrically connected k-curve;
- |X| set of closed points of X;

An explicit bound on ℓ-primary torsion of one dimensional families of abelian varieties in positive characteristic

> Emiliano Ambrosi

Statement

Abstract modular curves

Genus and gonality

Controlling the gonality • *k* infinite finitely generated field , char(k) = p > 0 (e.g. $\mathbb{F}_{p}(T)$);

- $\ell \neq p$ a prime (for simplicity $\ell \geq 3$);
- X smooth geometrically connected k-curve;
- |X| set of closed points of X;
- For $x \in |X|$, k(x) residue field;

An explicit bound on ℓ-primary torsion of one dimensional families of abelian varieties in positive characteristic

> Emiliano Ambrosi

Statement

Abstract modular curves

Genus and gonality

Controlling the gonality

- *k* infinite finitely generated field , char(k) = p > 0 (e.g. $\mathbb{F}_{p}(T)$);
- $\ell \neq p$ a prime (for simplicity $\ell \geq 3$);
- X smooth geometrically connected k-curve;
- |X| set of closed points of X;
- For $x \in |X|$, k(x) residue field;
- f: $Y \rightarrow X$ abelian scheme of relative dimension g;

An explicit bound on ℓ-primary torsion of one dimensional families of abelian varieties in positive characteristic

> Emiliano Ambrosi

Statement

Abstract modular curves

Genus and gonality

Controlling the gonality

- *k* infinite finitely generated field , char(k) = p > 0 (e.g. $\mathbb{F}_{p}(T)$);
- $\ell \neq p$ a prime (for simplicity $\ell \geq 3$);
- X smooth geometrically connected k-curve;
- |X| set of closed points of X;
- For $x \in |X|$, k(x) residue field;
- f: $Y \rightarrow X$ abelian scheme of relative dimension g;

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

For $x \in |X|$, Y_x abelian variety;

An explicit bound on ℓ-primary torsion of one dimensional families of abelian varieties in positive characteristic

> Emiliano Ambrosi

Statement

Abstract modular curves

Genus and gonality

Controlling the gonality

- *k* infinite finitely generated field , char(k) = p > 0 (e.g. $\mathbb{F}_{p}(T)$);
- $\ell \neq p$ a prime (for simplicity $\ell \geq 3$);
- X smooth geometrically connected k-curve;
- |X| set of closed points of X;
- For $x \in |X|$, k(x) residue field;
- $f: Y \rightarrow X$ abelian scheme of relative dimension g;

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

- For $x \in |X|$, Y_x abelian variety;
- $Y_x(k(x))[\ell^{\infty}], \ell$ -primary k(x)-rational torsion.

An explicit bound on ℓ-primary torsion of one dimensional families of abelian varieties in positive characteristic

> Emiliano Ambrosi

Statement

Abstract modular curves

Genus and gonality

Controlling the gonality

- *k* infinite finitely generated field , char(k) = p > 0 (e.g. $\mathbb{F}_{p}(T)$);
- $\ell \neq p$ a prime (for simplicity $\ell \geq 3$);
- X smooth geometrically connected k-curve;
- |X| set of closed points of X;
- For $x \in |X|$, k(x) residue field;
- f: $Y \rightarrow X$ abelian scheme of relative dimension g;

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- For $x \in |X|$, Y_x abelian variety;
- $Y_x(k(x))[\ell^{\infty}]$, ℓ -primary k(x)-rational torsion.

Problem:

Study the variation of $Y_x(k(x))[\ell^{\infty}]$ with $x \in |X|$.

An explicit bound on *ℓ*-primary torsion of one dimensional families of abelian varieties in positive characteristic

> Emiliano Ambrosi

Statement

Abstract modular curves

Genus and gonality

Controlling the gonality

Theorem (E.A.)

Assume that $Y \to X$ admits an " \mathbb{F}_{p^n} -model". Then there exists an explicit constant $C := C(Y \to X, \ell)$ such that for $n \ge C$ there are only finitely many $x \in X(k)$ such that $Y_x[\ell^{\infty}](k)$ contains a point of order $\ge \ell^n$.

An explicit bound on *ℓ*-primary torsion of one dimensional families of abelian varieties in positive characteristic

> Emiliano Ambrosi

Statement

Abstract modular curves

Genus and gonality

Controlling the gonality

Theorem (E.A.)

Assume that $Y \to X$ admits an " \mathbb{F}_{p^n} -model". Then there exists an explicit constant $C := C(Y \to X, \ell)$ such that for $n \ge C$ there are only finitely many $x \in X(k)$ such that $Y_x[\ell^{\infty}](k)$ contains a point of order $\ge \ell^n$.

Remark

We will not make precise the hypothesis of having " \mathbb{F}_{p^n} -model". It is always true up to a finite base change and it is used to reduce the computations to finite fields.

An explicit bound on *ℓ*-primary torsion of one dimensional families of abelian varieties in positive characteristic

> Emiliano Ambrosi

Statement

Abstract modular curves

Genus and gonality

Controlling the gonality • η generic point of *X*;

▲□ > ▲圖 > ▲目 > ▲目 > ▲目 > ● ④ < @

An explicit bound on *ℓ*-primary torsion of one dimensional families of abelian varieties in positive characteristic

> Emiliano Ambrosi

Statement

Abstract modular curves

Genus and gonality

Controlling the gonality • η generic point of X;

For
$$x \in X$$
, $T_{\ell^{\infty}}(A_{\overline{x}}) = \varprojlim_n A_x(\overline{k})[\ell^n]$

An explicit bound on *ℓ*-primary torsion of one dimensional families of abelian varieties in positive characteristic

> Emiliano Ambrosi

Statement

Abstract modular curves

Genus and gonality

Controlling the gonality

- η generic point of *X*;
- For $x \in X$, $T_{\ell^{\infty}}(A_{\overline{x}}) = \varprojlim_n A_x(\overline{k})[\ell^n]$
- Smooth and proper base change:

$$\rho_{\ell}: \pi_1(X) \to GL(T_{\ell^{\infty}}(A_{\overline{\eta}}));$$

An explicit bound on *ℓ*-primary torsion of one dimensional families of abelian varieties in positive characteristic

> Emiliano Ambrosi

Statement

Abstract modular curves

Genus and gonality

Controlling the gonality • η generic point of *X*;

- For $x \in X$, $T_{\ell^{\infty}}(A_{\overline{x}}) = \varprojlim_n A_x(\overline{k})[\ell^n]$
- Smooth and proper base change:

$$ho_{\ell}:\pi_1(X)
ightarrow GL(T_{\ell^{\infty}}(A_{\overline{\eta}}));$$

For $x \in |X|$:

 $Gal(\overline{k(x)}|k(x)) := \pi_1(x) \rightarrow \pi(X);$

An explicit bound on *ℓ*-primary torsion of one dimensional families of abelian varieties in positive characteristic

> Emiliano Ambrosi

Statement

Abstract modular curves

Genus and gonality

Controlling the gonality • η generic point of *X*;

- For $x \in X$, $T_{\ell^{\infty}}(A_{\overline{x}}) = \varprojlim_n A_x(\overline{k})[\ell^n]$
- Smooth and proper base change:

$$ho_{\ell}:\pi_1(X)
ightarrow GL(T_{\ell^{\infty}}(A_{\overline{\eta}}));$$

For $x \in |X|$:

$$Gal(\overline{k(x)}|k(x)) := \pi_1(x) o \pi(X);$$

$$\bullet \rho_{\ell,x}: \pi_1(x) \to \pi(X) \to GL(T_{\ell^{\infty}}(A_{\overline{\eta}}));$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

An explicit bound on *ℓ*-primary torsion of one dimensional families of abelian varieties in positive characteristic

> Emiliano Ambrosi

Statement

Abstract modular curves

Genus and gonality

Controlling the gonality • η generic point of *X*;

- For $x \in X$, $T_{\ell^{\infty}}(A_{\overline{x}}) = \varprojlim_n A_x(\overline{k})[\ell^n]$
- Smooth and proper base change:

$$ho_{\ell}:\pi_1(X)
ightarrow GL(T_{\ell^{\infty}}(A_{\overline{\eta}}));$$

For $x \in |X|$:

$${\it Gal}(\overline{k(x)}|k(x)):=\pi_1(x) o\pi(X);$$

■ $\rho_{\ell,x}$: $\pi_1(x) \to \pi(X) \to GL(T_{\ell^{\infty}}(A_{\overline{\eta}}));$ ■ $\rho_{\ell,x}$ identifies with the natural representation

$$\pi_1(x) \to GL(T_{\ell^{\infty}}(A_{\overline{x}})).$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

An explicit bound on *ℓ*-primary torsion of one dimensional families of abelian varieties in positive characteristic

> Emiliano Ambrosi

Statement

Abstract modular curves

Genus and gonality

Controlling the gonality • $m_n \in T_{\ell^{\infty}}(A_{\overline{\eta}})/\ell^n$ of exact order ℓ^n ;

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

An explicit bound on ℓ-primary torsion of one dimensional families of abelian varieties in positive characteristic

> Emiliano Ambrosi

Statement

Abstract modular curves

Genus and gonality

Controlling the gonality

- $m_n \in T_{\ell^{\infty}}(A_{\overline{\eta}})/\ell^n$ of exact order ℓ^n ;
- $G(m_n) := Stab_{\pi_1(X)}(m_n) \subseteq \pi_1(X)$ open subgroup;

An explicit bound on ℓ-primary torsion of one dimensional families of abelian varieties in positive characteristic

> Emiliano Ambrosi

Statement

Abstract modular curves

Genus and gonality

Controlling the gonality

- $m_n \in T_{\ell^{\infty}}(A_{\overline{\eta}})/\ell^n$ of exact order ℓ^n ;
- $G(m_n) := Stab_{\pi_1(X)}(m_n) \subseteq \pi_1(X)$ open subgroup;

▲□▶▲□▶▲□▶▲□▶ □ のQ@

■ Via Galois formalism $X_1(m_n) \rightarrow X$ finite étale;

An explicit bound on *ℓ*-primary torsion of one dimensional families of abelian varieties in positive characteristic

> Emiliano Ambrosi

Statement

Abstract modular curves

Genus and gonality

Controlling the gonality

- $m_n \in T_{\ell^{\infty}}(A_{\overline{\eta}})/\ell^n$ of exact order ℓ^n ;
- $G(m_n) := Stab_{\pi_1(X)}(m_n) \subseteq \pi_1(X)$ open subgroup;

- Via Galois formalism $X_1(m_n) \rightarrow X$ finite étale;
- $X_1(\ell^n)$ disjoint union of $X_1(m_n)$;

An explicit bound on ℓ-primary torsion of one dimensional families of abelian varieties in positive characteristic

> Emiliano Ambrosi

Statement

Abstract modular curves

Genus and gonality

Controlling the gonality

- $m_n \in T_{\ell^{\infty}}(A_{\overline{\eta}})/\ell^n$ of exact order ℓ^n ;
- $G(m_n) := Stab_{\pi_1(X)}(m_n) \subseteq \pi_1(X)$ open subgroup;
- Via Galois formalism $X_1(m_n) \rightarrow X$ finite étale;
- $X_1(\ell^n)$ disjoint union of $X_1(m_n)$;

Lemma

 A_x has a k(x)-point of exact order ℓ^n if and only if $x \in |X|$ lifts to a k(x)-rational point of $X_1(\ell^n)$

$$egin{array}{c} X_1(\ell^n & \downarrow & \\ Spec(k(x)) \longrightarrow X & \end{array}$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

An explicit bound on *ℓ*-primary torsion of one dimensional families of abelian varieties in positive characteristic

> Emiliano Ambrosi

Statement

Abstract modular curves

Genus and gonality

Controlling the gonality

Proposition

There exists an explicit constant $C := C(Y \to X, \ell)$ such that for $n \ge C$ the set $X_1(\ell^n)(k)$ is finite.

An explicit bound on *ℓ*-primary torsion of one dimensional families of abelian varieties in positive characteristic

> Emiliano Ambrosi

Statement

Abstract modular curves

Genus and gonality

Controlling the gonality

Fact

There exists a constant g := g(k) such that for every smooth proper curve *C* of genus $\geq g$, the set *C*(*k*) is finite

An explicit bound on *ℓ*-primary torsion of one dimensional families of abelian varieties in positive characteristic

> Emiliano Ambrosi

Statement

Abstract modular curves

Genus and gonality

Controlling the gonality

Fact

There exists a constant g := g(k) such that for every smooth proper curve *C* of genus $\geq g$, the set *C*(*k*) is finite

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Remark

The constant g is easy to compute.

An explicit bound on *ℓ*-primary torsion of one dimensional families of abelian varieties in positive characteristic

> Emiliano Ambrosi

Statement

Abstract modular curves

Genus and gonality

Controlling the gonality

Definition

C smooth proper connected curve, the *k*-gonality of *C*, $\gamma_{C,k}$ is $min\{Deg(f)|f: C \to \mathbb{P}^1_k\}$

An explicit bound on *ℓ*-primary torsion of one dimensional families of abelian varieties in positive characteristic

> Emiliano Ambrosi

Statement

Abstract modular curves

Genus and gonality

Controlling the gonality

Definition

C smooth proper connected curve, the *k*-gonality of *C*, $\gamma_{C,k}$ is $\min\{Deg(f)|f: C \to \mathbb{P}^1_k\}$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Lemma

If C has a rational point then $g_C \ge \gamma_{C,k} - 1$.

An explicit bound on ℓ-primary torsion of one dimensional families of abelian varieties in positive characteristic

> Emiliano Ambrosi

Statement

Abstract modular curves

Genus and gonality

Controlling the gonality

Assume from now on that *k* is a finite field.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Key lemma

An explicit bound on *ℓ*-primary torsion of one dimensional families of abelian varieties in positive characteristic

> Emiliano Ambrosi

Statement

Abstract modular curves

Genus and gonality

Controlling the gonality

Assume from now on that *k* is a finite field.
For *x* ∈ |*X*|, π₁(*x*) ≃ 2 generated by the Frobenius *F_x*.

Key lemma

.

An explicit bound on *ℓ*-primary torsion of one dimensional families of abelian varieties in positive characteristic

> Emiliano Ambrosi

Statement

Abstract modular curves

Genus and gonality

Controlling the gonality

- Assume from now on that *k* is a finite field.
- For $x \in |X|$, $\pi_1(x) \simeq \hat{\mathbb{Z}}$ generated by the Frobenius F_x .
- C smooth proper k-curve. Write

$$\mathcal{D}_{\mathcal{C}} := \{ [k(\mathcal{c}):k] | \mathcal{c} \in |\mathcal{C}| \} \subseteq \mathbb{Z} \}$$

Key lemma

.

An explicit bound on *ℓ*-primary torsion of one dimensional families of abelian varieties in positive characteristic

> Emiliano Ambrosi

Statement

Abstract modular curves

Genus and gonality

Controlling the gonality

Assume from now on that *k* is a finite field.

For $x \in |X|$, $\pi_1(x) \simeq \hat{\mathbb{Z}}$ generated by the Frobenius F_x .

C smooth proper k-curve. Write

$$\mathcal{D}_\mathcal{C} := \{ [m{k}(m{c}):m{k}] | m{c} \in |\mathcal{C}| \} \subseteq \mathbb{Z} \}$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Lemma (Cadoret-Tamagawa)

Fix $d \in \mathbb{Z}$. If $D_C \subseteq \mathbb{Z}_{\geq d} \cup \bigcup_{n \geq 0} \ell^n$ then $\gamma_C \geq \frac{d}{2}$

An explicit bound on *ℓ*-primary torsion of one dimensional families of abelian varieties in positive characteristic

> Emiliano Ambrosi

Statement

Abstract modular curves

Genus and gonality

Controlling the gonality

• $f: C \to \mathbb{P}^1_k$ with deg(f) < d/2;

An explicit bound on *ℓ*-primary torsion of one dimensional families of abelian varieties in positive characteristic

> Emiliano Ambrosi

Statement

Abstract modular curves

Genus and gonality

Controlling the gonality

■ $f : C \to \mathbb{P}_k^1$ with deg(f) < d/2; ■ Take $x \in \mathbb{P}_k^1$ with [k(x) : k] = 2 and $c \in f^{-1}(x)$;

An explicit bound on *ℓ*-primary torsion of one dimensional families of abelian varieties in positive characteristic

> Emiliano Ambrosi

Statement

Abstract modular curves

Genus and gonality

Controlling the gonality

■ $f: C \to \mathbb{P}_k^1$ with deg(f) < d/2; ■ Take $x \in \mathbb{P}_k^1$ with [k(x): k] = 2 and $c \in f^{-1}(x)$; ■ [k(c): k] = [k(c): k(x)][k(x): k] = [k(c): k(x)]2;

An explicit bound on *ℓ*-primary torsion of one dimensional families of abelian varieties in positive characteristic

> Emiliano Ambrosi

Statement

Abstract modular curves

Genus and gonality

Controlling the gonality

f: *C* → \mathbb{P}_k^1 with *deg*(*f*) < *d*/2;
Take *x* ∈ \mathbb{P}_k^1 with [*k*(*x*) : *k*] = 2 and *c* ∈ *f*⁻¹(*x*);
[*k*(*c*) : *k*] = [*k*(*c*) : *k*(*x*)][*k*(*x*) : *k*] = [*k*(*c*) : *k*(*x*)]2;
So [*k*(*c*) : *k*(*x*)]2 ∈ *D_C* but [*k*(*c*) : *k*(*x*)]2 < *d*.

An explicit bound on *ℓ*-primary torsion of one dimensional families of abelian varieties in positive characteristic

> Emiliano Ambrosi

Statement

Abstract modular curves

Genus and gonality

Controlling the gonality

■ $f: C \to \mathbb{P}_k^1$ with deg(f) < d/2; ■ Take $x \in \mathbb{P}_k^1$ with [k(x):k] = 2 and $c \in f^{-1}(x)$; ■ [k(c):k] = [k(c):k(x)][k(x):k] = [k(c):k(x)]2; ■ So $[k(c):k(x)]2 \in D_C$ but [k(c):k(x)]2 < d.

This is in contradiction with $D_C \subseteq \mathbb{Z}_{>d} \cup \bigcup_{n>0} \ell^n$.

An explicit bound on *ℓ*-primary torsion of one dimensional families of abelian varieties in positive characteristic

> Emiliano Ambrosi

Statement

Abstract modular curves

Genus and gonality

Controlling the gonality

• $m_n \in T_{\ell^{\infty}}(A_{\overline{\eta}})/\ell^n$ of exact order ℓ^n

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

An explicit bound on *ℓ*-primary torsion of one dimensional families of abelian varieties in positive characteristic

> Emiliano Ambrosi

Statement

Abstract modular curves

Genus and gonality

Controlling the gonality

• $m_n \in T_{\ell^{\infty}}(A_{\overline{\eta}})/\ell^n$ of exact order ℓ^n

■ $X_1(m_n)^{cmp}$ smooth compactification of $X_1(m_n)$;

An explicit bound on *ℓ*-primary torsion of one dimensional families of abelian varieties in positive characteristic

> Emiliano Ambrosi

Statement

Abstract modular curves

Genus and gonality

Controlling the gonality

- $m_n \in T_{\ell^{\infty}}(A_{\overline{\eta}})/\ell^n$ of exact order ℓ^n
- $X_1(m_n)^{cmp}$ smooth compactification of $X_1(m_n)$;
- Thanks to the lemma, it is enough to control the following quantity:

An explicit bound on *ℓ*-primary torsion of one dimensional families of abelian varieties in positive characteristic

> Emiliano Ambrosi

Statement

Abstract modular curves

Genus and gonality

Controlling the gonality

- $m_n \in T_{\ell^{\infty}}(A_{\overline{\eta}})/\ell^n$ of exact order ℓ^n
- $X_1(m_n)^{cmp}$ smooth compactification of $X_1(m_n)$;
- Thanks to the lemma, it is enough to control the following quantity:

$$\blacksquare [k(x_n):k] \text{ for } x_n \in X_{m_n}.$$

An explicit bound on *ℓ*-primary torsion of one dimensional families of abelian varieties in positive characteristic

> Emiliano Ambrosi

Statement

Abstract modular curves

Genus and gonality

Controlling the gonality

- $m_n \in T_{\ell^{\infty}}(A_{\overline{\eta}})/\ell^n$ of exact order ℓ^n
- $X_1(m_n)^{cmp}$ smooth compactification of $X_1(m_n)$;
- Thanks to the lemma, it is enough to control the following quantity:

$$\blacksquare [k(x_n):k] \text{ for } x_n \in X_{m_n}.$$

■ Replacing X with a finite étale cover, we may assume that the image Π_{ℓ∞} of ρ_ℓ is pro-ℓ and that x ∈ |X^{cmp}| − |X| are k-rational.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

An explicit bound on *ℓ*-primary torsion of one dimensional families of abelian varieties in positive characteristic

> Emiliano Ambrosi

Statement

Abstract modular curves

Genus and gonality

Controlling the gonality

Pick $x_n \in X_1(m_n)^{cmp}$ with image x in |X|;

An explicit bound on ℓ-primary torsion of one dimensional families of abelian varieties in positive characteristic

> Emiliano Ambrosi

Statement

Abstract modular curves

Genus and gonality

Controlling the gonality

Pick $x_n \in X_1(m_n)^{cmp}$ with image x in |X|;

If $x \in |X^{cmp}| - |X|$, since k(x) = k and $\Pi_{\ell^{\infty}}$ is pro- ℓ , we have that $[k(X_n) : k]$ is a power of ℓ ;

An explicit bound on ℓ-primary torsion of one dimensional families of abelian varieties in positive characteristic

> Emiliano Ambrosi

Statement

Abstract modular curves

Genus and gonality

Controlling the gonality

- Pick $x_n \in X_1(m_n)^{cmp}$ with image x in |X|;
- If x ∈ |X^{cmp}| − |X|, since k(x) = k and Π_{ℓ∞} is pro-ℓ, we have that [k(X_n) : k] is a power of ℓ;

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

■ Assume x ∈ |X|, α_{x,i} eigenvalues of Frobenius F_x acting on T_ℓ∞(A_x);

An explicit bound on ℓ-primary torsion of one dimensional families of abelian varieties in positive characteristic

> Emiliano Ambrosi

Statement

Abstract modular curves

Genus and gonality

Controlling the gonality

- Pick $x_n \in X_1(m_n)^{cmp}$ with image x in |X|;
- If x ∈ |X^{cmp}| − |X|, since k(x) = k and Π_{ℓ∞} is pro-ℓ, we have that [k(X_n) : k] is a power of ℓ;

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

■ Assume x ∈ |X|, α_{x,i} eigenvalues of Frobenius F_x acting on T_ℓ∞(A_x);

$$\blacksquare m_n \in (T_{\ell^{\infty}}(A_x)/\ell^n)^{\pi_1(x_n)};$$

An explicit bound on ℓ-primary torsion of one dimensional families of abelian varieties in positive characteristic

> Emiliano Ambrosi

Statement

Abstract modular curves

Genus and gonality

Controlling the gonality

- Pick $x_n \in X_1(m_n)^{cmp}$ with image x in |X|;
- If $x \in |X^{cmp}| |X|$, since k(x) = k and $\Pi_{\ell^{\infty}}$ is pro- ℓ , we have that $[k(X_n) : k]$ is a power of ℓ ;
- Assume x ∈ |X|, α_{x,i} eigenvalues of Frobenius F_x acting on T_ℓ∞(A_x);

$$\blacksquare \ m_n \in (T_{\ell^{\infty}}(A_x)/\ell^n)^{\pi_1(x_n)};$$

Since m_n is of exact order ℓ^n

$$\ell^n |\prod_{1\leq i\leq 2g} (1-\alpha_{x,i}^{[k(x_n):k(x)]})$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

An explicit bound on ℓ-primary torsion of one dimensional families of abelian varieties in positive characteristic

> Emiliano Ambrosi

Statement

Abstract modular curves

Genus and gonality

Controlling the gonality

- Pick $x_n \in X_1(m_n)^{cmp}$ with image x in |X|;
- If x ∈ |X^{cmp}| − |X|, since k(x) = k and Π_{ℓ∞} is pro-ℓ, we have that [k(X_n) : k] is a power of ℓ;
- Assume x ∈ |X|, α_{x,i} eigenvalues of Frobenius F_x acting on T_ℓ∞(A_x);

$$\blacksquare \ m_n \in (T_{\ell^{\infty}}(A_x)/\ell^n)^{\pi_1(x_n)};$$

Since m_n is of exact order ℓ^n

$$\ell^n |\prod_{1\leq i\leq 2g} (1-\alpha^{[k(x_n):k(x)]}_{x,i})$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

• $\ell^n \leq \prod_{1 \leq i \leq 2g} (1 + |\alpha_{x,i}|^{[k(x_n):k(x)]}).$

An explicit bound on *ℓ*-primary torsion of one dimensional families of abelian varieties in positive characteristic

> Emiliano Ambrosi

Statement

Abstract modular curves

Genus and gonality

Controlling the gonality

Fact (Weil conjectures)

 $\alpha_{x,i}$ has (complex) absolute value $|k(x)|^{1/2}$.

An explicit bound on *ℓ*-primary torsion of one dimensional families of abelian varieties in positive characteristic

> Emiliano Ambrosi

Statement

Abstract modular curves

Genus and gonality

Controlling the gonality

Fact (Weil conjectures)

 $\alpha_{x,i}$ has (complex) absolute value $|k(x)|^{1/2}$.

End of the proof

$$\ell^n \leq \prod_{1 \leq i \leq 2g} (1 + |\alpha_{x,i}|^{[k(x_n):k(x)]}).$$

▲□ > ▲圖 > ▲ 画 > ▲ 画 > → 画 → のへで

An explicit bound on *ℓ*-primary torsion of one dimensional families of abelian varieties in positive characteristic

> Emiliano Ambrosi

Statement

Abstract modular curves

Genus and gonality

Controlling the gonality

Fact (Weil conjectures)

 $\alpha_{x,i}$ has (complex) absolute value $|k(x)|^{1/2}$.

End of the proof

$$\ell^{n} \leq \prod_{1 \leq i \leq 2g} (1 + |\alpha_{x,i}|^{[k(x_{n}):k(x)]}).$$

$$\ell^{n} \leq \prod_{1 \leq i \leq 2g} (1 + |k(x)|^{1/2[k(x_{n}):k(x)]}) = (1 + |k|^{1/2[k(x_{n}):k]})^{2g};$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

An explicit bound on *ℓ*-primary torsion of one dimensional families of abelian varieties in positive characteristic

> Emiliano Ambrosi

Statement

Abstract modular curves

Genus and gonality

Controlling the gonality

Fact (Weil conjectures)

 $\alpha_{x,i}$ has (complex) absolute value $|k(x)|^{1/2}$.

End of the proof

$$\ell^n \leq \prod_{1 \leq i \leq 2g} (1 + |\alpha_{x,i}|^{[k(x_n):k(x)]}).$$

$$\ell^n \leq \prod_{1 \leq i \leq 2g} (1 + |k(x)|^{1/2[k(x_n):k(x)]}) = (1 + |k|^{1/2[k(x_n):k]})^{2g};$$

and so

$$[k(x_n):k] \ge 2\frac{\ln(\ell^{n/2g}-1)}{\ln(|k|)}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ● ●