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Setting

k infinite finitely generated field , char(k) = p > 0 (e.g.
Fp(T ));

` 6= p a prime (for simplicity ` ≥ 3);
X smooth geometrically connected k -curve;
|X | set of closed points of X ;
For x ∈ |X |, k(x) residue field;
f : Y → X abelian scheme of relative dimension g;
For x ∈ |X |, Yx abelian variety;
Yx (k(x))[`∞], `-primary k(x)-rational torsion.

Problem:

Study the variation of Yx (k(x))[`∞] with x ∈ |X |.
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Theorem (E.A.)

Assume that Y → X admits an “Fpn -model”. Then there
exists an explicit constant C := C(Y → X , `) such that for
n ≥ C there are only finitely many x ∈ X (k) such that
Yx [`∞](k) contains a point of order ≥ `n.

Remark

We will not make precise the hypothesis of having
“Fpn -model”. It is always true up to a finite base change and
it is used to reduce the computations to finite fields.
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Specialization of representations

η generic point of X ;

For x ∈ X , T`∞(Ax ) = lim←−n
Ax (k)[`n]

Smooth and proper base change:

ρ` : π1(X )→ GL(T`∞(Aη));

For x ∈ |X |:

Gal(k(x)|k(x)) := π1(x)→ π(X );

ρ`,x : π1(x)→ π(X )→ GL(T`∞(Aη));
ρ`,x identifies with the natural representation

π1(x)→ GL(T`∞(Ax )).
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Abstract modular curves

mn ∈ T`∞(Aη)/`n of exact order `n;

G(mn) := Stabπ1(X)(mn) ⊆ π1(X ) open subgroup;
Via Galois formalism X1(mn)→ X finite étale;
X1(`n) disjoint union of X1(mn);

Lemma

Ax has a k(x)-point of exact order `n if and only if x ∈ |X |
lifts to a k(x)-rational point of X1(`n)

X1(`n)

Spec(k(x)) X
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Abstract modular curves

Proposition

There exists an explicit constant C := C(Y → X , `) such
that for n ≥ C the set X1(`n)(k) is finite.
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Genus and gonality

Fact

There exists a constant g := g(k) such that for every
smooth proper curve C of genus ≥ g, the set C(k) is finite

Remark

The constant g is easy to compute.
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Genus and gonality

Definition

C smooth proper connected curve, the k -gonality of C, γC,k
is

min{Deg(f )|f : C → P1
k}

Lemma

If C has a rational point then gC ≥ γC,k − 1.
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Key lemma

Assume from now on that k is a finite field.

For x ∈ |X |, π1(x) ' Ẑ generated by the Frobenius Fx .
C smooth proper k -curve. Write

DC := {[k(c) : k ]|c ∈ |C|} ⊆ Z

.

Lemma (Cadoret-Tamagawa)

Fix d ∈ Z. If DC ⊆ Z≥d ∪
⋃

n≥0 `
n then γC ≥ d

2
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Proof of the lemma

f : C → P1
k with deg(f ) < d/2;

Take x ∈ P1
k with [k(x) : k ] = 2 and c ∈ f−1(x);

[k(c) : k ] = [k(c) : k(x)][k(x) : k ] = [k(c) : k(x)]2;
So [k(c) : k(x)]2 ∈ DC but [k(c) : k(x)]2 < d .
This is in contradiction with DC ⊆ Z≥d ∪

⋃
n≥0 `

n.
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Proof of the proposition

mn ∈ T`∞(Aη)/`n of exact order `n

X1(mn)cmp smooth compactification of X1(mn);
Thanks to the lemma, it is enough to control the
following quantity:
[k(xn) : k ] for xn ∈ Xmn .
Replacing X with a finite étale cover, we may assume
that the image Π`∞ of ρ` is pro-` and that
x ∈ |X cmp| − |X | are k -rational.
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Pick xn ∈ X1(mn)cmp with image x in |X |;

If x ∈ |X cmp| − |X |, since k(x) = k and Π`∞ is pro-`, we
have that [k(Xn) : k ] is a power of `;
Assume x ∈ |X |, αx ,i eigenvalues of Frobenius Fx
acting on T`∞(Ax );
mn ∈ (T`∞(Ax )/`n)π1(xn);
Since mn is of exact order `n

`n|
∏

1≤i≤2g

(1− α[k(xn):k(x)]
x ,i )

`n ≤
∏

1≤i≤2g(1 + |αx ,i |[k(xn):k(x)]).
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Using the Weil conjectures

Fact (Weil conjectures)

αx ,i has (complex) absolute value |k(x)|1/2.

End of the proof

`n ≤
∏

1≤i≤2g(1 + |αx ,i |[k(xn):k(x)]).

`n ≤
∏

1≤i≤2g(1 + |k(x)|1/2[k(xn):k(x)]) =

(1 + |k |1/2[k(xn):k ])2g ;
and so

[k(xn) : k ] ≥ 2
ln (`n/2g − 1)

ln (|k |)
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