An explicit
bound on
$\ell$-primary
torsion of one dimensional
families of
abelian
varieties in
positive characteristic

Emiliano
Ambrosi

## An explicit bound on $\ell$-primary torsion of one dimensional families of abelian varieties in positive characteristic

Emiliano Ambrosi

Explicit and computational approaches to Galois representations, Luxembourg

4 July 2018

## Setting

An explicit bound on $\ell$-primary torsion of one dimensional families of abelian varieties in
positive characteristic

Emiliano
Ambrosi

Statement
Abstract
modular
curves
Genus and gonality

Controlling the gonality
$\square k$ infinite finitely generated field, $\operatorname{char}(k)=p>0$ (e.g. $\left.\mathbb{F}_{p}(T)\right) ;$

## Setting

An explicit bound on $\ell$-primary torsion of one dimensional families of abelian varieties in positive characteristic

Emiliano
Ambrosi

Statement
Abstract
modular
curves
Genus and gonality
Controlling the gonality
$\square k$ infinite finitely generated field, $\operatorname{char}(k)=p>0$ (e.g. $\left.\mathbb{F}_{p}(T)\right) ;$
■ $\ell \neq p$ a prime (for simplicity $\ell \geq 3$ );

## Setting

An explicit bound on $\ell$-primary torsion of one dimensional families of abelian varieties in
positive characteristic

Emiliano
Ambrosi

Statement
Abstract
modular
curves
Genus and gonality
Controlling the gonality
$\square k$ infinite finitely generated field, $\operatorname{char}(k)=p>0$ (e.g. $\left.\mathbb{F}_{p}(T)\right) ;$
■ $\ell \neq p$ a prime (for simplicity $\ell \geq 3$ );
■ $X$ smooth geometrically connected $k$-curve;

## Setting

An explicit bound on $\ell$-primary torsion of one dimensional families of abelian varieties in
positive characteristic

Emiliano
Ambrosi

Statement
Abstract
modular
curves
Genus and gonality
Controlling the gonality
$\square k$ infinite finitely generated field, $\operatorname{char}(k)=p>0$ (e.g. $\left.\mathbb{F}_{p}(T)\right) ;$
■ $\ell \neq p$ a prime (for simplicity $\ell \geq 3$ );
■ $X$ smooth geometrically connected $k$-curve;
■ $|X|$ set of closed points of $X$;

## Setting

$\square k$ infinite finitely generated field, $\operatorname{char}(k)=p>0$ (e.g. $\left.\mathbb{F}_{p}(T)\right)$;
■ $\ell \neq p$ a prime (for simplicity $\ell \geq 3$ );
■ $X$ smooth geometrically connected $k$-curve;
■ $|X|$ set of closed points of $X$;
■ For $x \in|X|, k(x)$ residue field;

## Setting

$\square k$ infinite finitely generated field, $\operatorname{char}(k)=p>0$ (e.g. $\left.\mathbb{F}_{p}(T)\right)$;
■ $\ell \neq p$ a prime (for simplicity $\ell \geq 3$ );
■ $X$ smooth geometrically connected $k$-curve;
■ $|X|$ set of closed points of $X$;
$\square$ For $x \in|X|, k(x)$ residue field;
■ $f: Y \rightarrow X$ abelian scheme of relative dimension $g$;

## Setting

$\square k$ infinite finitely generated field, $\operatorname{char}(k)=p>0$ (e.g. $\left.\mathbb{F}_{p}(T)\right)$;
■ $\ell \neq p$ a prime (for simplicity $\ell \geq 3$ );
■ $X$ smooth geometrically connected $k$-curve;
■ $|X|$ set of closed points of $X$;
$\square$ For $x \in|X|, k(x)$ residue field;
■ $f: Y \rightarrow X$ abelian scheme of relative dimension $g$;
■ For $x \in|X|, Y_{X}$ abelian variety;

## Setting

$\square k$ infinite finitely generated field, $\operatorname{char}(k)=p>0$ (e.g. $\left.\mathbb{F}_{p}(T)\right)$;
■ $\ell \neq p$ a prime (for simplicity $\ell \geq 3$ );
■ $X$ smooth geometrically connected $k$-curve;
■ $|X|$ set of closed points of $X$;

- For $x \in|X|, k(x)$ residue field;

■ $f: Y \rightarrow X$ abelian scheme of relative dimension $g$;
■ For $x \in|X|, Y_{X}$ abelian variety;
■ $Y_{X}(k(x))\left[\ell^{\infty}\right]$, $\ell$-primary $k(x)$-rational torsion.

## Setting

An explicit
bound on
$\ell$-primary
torsion of one
dimensional
families of
abelian
varieties in
positive
characteristic
Emiliano
Ambrosi

Statement
Abstract modular curves
$\square k$ infinite finitely generated field, $\operatorname{char}(k)=p>0$ (e.g. $\left.\mathbb{F}_{p}(T)\right)$;
■ $\ell \neq p$ a prime (for simplicity $\ell \geq 3$ );
■ $X$ smooth geometrically connected $k$-curve;
■ $|X|$ set of closed points of $X$;

- For $x \in|X|, k(x)$ residue field;

■ $f: Y \rightarrow X$ abelian scheme of relative dimension $g$;
$\square$ For $x \in|X|, Y_{X}$ abelian variety;
■ $Y_{X}(k(x))\left[\ell^{\infty}\right]$, $\ell$-primary $k(x)$-rational torsion.

## Problem:

Study the variation of $Y_{X}(k(x))\left[\ell^{\infty}\right]$ with $x \in|X|$.

An explicit
bound on $\ell$-primary torsion of one dimensional families of abelian varieties in
positive characteristic

Emiliano
Ambrosi

## Theorem (E.A.)

Assume that $Y \rightarrow X$ admits an " $\mathbb{F}_{p^{n}}$-model". Then there exists an explicit constant $C:=C(Y \rightarrow X, \ell)$ such that for $n \geq C$ there are only finitely many $x \in X(k)$ such that $Y_{x}\left[\ell^{\infty}\right](k)$ contains a point of order $\geq \ell^{n}$.

Statement

## Theorem (E.A.)

Assume that $Y \rightarrow X$ admits an " $\mathbb{F}_{p^{n}}$-model". Then there exists an explicit constant $C:=C(Y \rightarrow X, \ell)$ such that for $n \geq C$ there are only finitely many $x \in X(k)$ such that $Y_{x}\left[\ell^{\infty}\right](k)$ contains a point of order $\geq \ell^{n}$.

## Remark

We will not make precise the hypothesis of having " $F_{p^{n}}$-model". It is always true up to a finite base change and it is used to reduce the computations to finite fields.

## Specialization of representations

An explicit bound on $\ell$-primary torsion of one dimensional families of abelian varieties in positive characteristic

Emiliano
Ambrosi

Statement
Abstract
modular
curves
Genus and
gonality
Controlling the gonality

■ $\eta$ generic point of $X$;

## Specialization of representations

An explicit
bound on $\ell$-primary torsion of one dimensional families of abelian varieties in positive characteristic

Emiliano
Ambrosi

Statement
Abstract
modular
curves
Genus and gonality

Controlling the gonality

■ $\eta$ generic point of $X$;
$■$ For $x \in X, T_{\ell \infty}\left(A_{\bar{x}}\right)=\lim _{\longleftarrow_{n}} A_{x}(\bar{k})\left[\ell^{n}\right]$

## Specialization of representations

An explicit
bound on
$\ell$-primary
torsion of one dimensional
families of
abelian
varieties in
positive
characteristic
Emiliano
Ambrosi

Statement
Abstract
modular
curves
Genus and
gonality
Controlling the gonality

■ $\eta$ generic point of $X$;
$\square$ For $x \in X, T_{\ell \infty}\left(A_{\bar{x}}\right)=\lim _{\leftrightarrows_{n}} A_{x}(\bar{k})\left[\ell^{n}\right]$
$■$ Smooth and proper base change:

$$
\rho_{\ell}: \pi_{1}(X) \rightarrow G L\left(T_{\ell \infty}\left(A_{\bar{\eta}}\right)\right)
$$

## Specialization of representations

An explicit
bound on
$\ell$-primary
torsion of one dimensional
families of
abelian
varieties in
positive
characteristic
Emiliano
Ambrosi

Statement
Abstract
modular
curves
Genus and
gonality
Controlling the gonality

■ $\eta$ generic point of $X$;
■ For $x \in X, T_{\ell^{\infty}}\left(A_{\bar{x}}\right)=\lim _{\leftrightarrows_{n}} A_{x}(\bar{k})\left[\ell^{n}\right]$
■ Smooth and proper base change:

$$
\rho_{\ell}: \pi_{1}(X) \rightarrow G L\left(T_{\ell \infty}\left(A_{\bar{\eta}}\right)\right)
$$

■ For $x \in|X|$ :

$$
\operatorname{Gal}(\overline{k(x)} \mid k(x)):=\pi_{1}(x) \rightarrow \pi(X) ;
$$

## Specialization of representations

An explicit
bound on
$\ell$-primary
torsion of one dimensional
families of
abelian
varieties in
positive
characteristic
Emiliano
Ambrosi

Statement
Abstract
modular
curves
Genus and
gonality
Controlling the gonality

■ $\eta$ generic point of $X$;
$\square$ For $x \in X, T_{\ell^{\infty}}\left(A_{\bar{x}}\right)=\lim _{\leftrightarrows_{n}} A_{x}(\bar{k})\left[\ell^{n}\right]$
■ Smooth and proper base change:

$$
\rho_{\ell}: \pi_{1}(X) \rightarrow G L\left(T_{\ell \infty}\left(A_{\bar{\eta}}\right)\right)
$$

■ For $x \in|X|$ :

$$
\operatorname{Gal}(\overline{k(x)} \mid k(x)):=\pi_{1}(x) \rightarrow \pi(X) ;
$$

■ $\rho_{\ell, x}: \pi_{1}(x) \rightarrow \pi(X) \rightarrow G L\left(T_{\ell \infty}\left(A_{\bar{\eta}}\right)\right) ;$

## Specialization of representations

An explicit
bound on
$\ell$-primary
torsion of one dimensional families of abelian varieties in positive characteristic

Emiliano
Ambrosi

Statement
Abstract
modular
curves
Genus and
gonality
Controlling the gonality

■ $\eta$ generic point of $X$;
■ For $x \in X, T_{\ell \infty}\left(A_{\bar{x}}\right)=\lim _{n} A_{x}(\bar{k})\left[\ell^{n}\right]$
■ Smooth and proper base change:

$$
\rho_{\ell}: \pi_{1}(X) \rightarrow G L\left(T_{\ell \infty}\left(A_{\bar{\eta}}\right)\right)
$$

■ For $x \in|X|$ :

$$
\operatorname{Gal}(\overline{k(x)} \mid k(x)):=\pi_{1}(x) \rightarrow \pi(X) ;
$$

- $\rho_{\ell, x}: \pi_{1}(x) \rightarrow \pi(X) \rightarrow G L\left(T_{\ell \infty}\left(A_{\bar{\eta}}\right)\right)$;
- $\rho_{\ell, x}$ identifies with the natural representation

$$
\pi_{1}(x) \rightarrow G L\left(T_{\ell^{\infty}}\left(A_{\bar{x}}\right)\right)
$$

## Abstract modular curves

An explicit bound on $\ell$-primary torsion of one dimensional families of abelian varieties in positive characteristic

Emiliano
Ambrosi

Statement
Abstract
modular
curves
Genus and gonality
Controlling the gonality

■ $m_{n} \in T_{\ell \infty}\left(A_{\bar{\eta}}\right) / \ell^{n}$ of exact order $\ell^{n}$;

## Abstract modular curves

An explicit bound on $\ell$-primary torsion of one dimensional families of abelian varieties in positive characteristic

Emiliano
Ambrosi

Statement
Abstract
modular
curves
Genus and gonality
Controlling the gonality

■ $m_{n} \in T_{\ell \infty}\left(A_{\bar{\eta}}\right) / \ell^{n}$ of exact order $\ell^{n}$;
■ $G\left(m_{n}\right):=\operatorname{Stab}_{\pi_{1}(X)}\left(m_{n}\right) \subseteq \pi_{1}(X)$ open subgroup;

## Abstract modular curves

An explicit
bound on
$\ell$-primary
torsion of one dimensional
families of
abelian
varieties in
positive
characteristic
Emiliano
Ambrosi

Statement
Abstract
modular
curves
Genus and
gonality
Controlling the gonality

- $m_{n} \in T_{\ell \infty}\left(A_{\bar{\eta}}\right) / \ell^{n}$ of exact order $\ell^{n}$;

■ $G\left(m_{n}\right):=\operatorname{Stab}_{\pi_{1}(X)}\left(m_{n}\right) \subseteq \pi_{1}(X)$ open subgroup;
■ Via Galois formalism $X_{1}\left(m_{n}\right) \rightarrow X$ finite étale;

## Abstract modular curves

An explicit
bound on
$\ell$-primary
torsion of one dimensional
families of
abelian
varieties in
positive
characteristic
Emiliano
Ambrosi

Statement
Abstract
modular
curves
Genus and
gonality
Controlling the gonality

- $m_{n} \in T_{\ell \infty}\left(A_{\bar{\eta}}\right) / \ell^{n}$ of exact order $\ell^{n}$;

■ $G\left(m_{n}\right):=\operatorname{Stab}_{\pi_{1}(X)}\left(m_{n}\right) \subseteq \pi_{1}(X)$ open subgroup;
■ Via Galois formalism $X_{1}\left(m_{n}\right) \rightarrow X$ finite étale;
■ $X_{1}\left(\ell^{n}\right)$ disjoint union of $X_{1}\left(m_{n}\right)$;

## Abstract modular curves

An explicit bound on $\ell$-primary torsion of one dimensional families of abelian varieties in positive characteristic

Emiliano
Ambrosi

Statement
Abstract
modular
curves

■ $m_{n} \in T_{\ell \infty}\left(A_{\bar{\eta}}\right) / \ell^{n}$ of exact order $\ell^{n}$;
■ $G\left(m_{n}\right):=\operatorname{Stab}_{\pi_{1}(X)}\left(m_{n}\right) \subseteq \pi_{1}(X)$ open subgroup;
■ Via Galois formalism $X_{1}\left(m_{n}\right) \rightarrow X$ finite étale;
■ $X_{1}\left(\ell^{n}\right)$ disjoint union of $X_{1}\left(m_{n}\right)$;

## Lemma

$A_{x}$ has a $k(x)$-point of exact order $\ell^{n}$ if and only if $x \in|X|$ lifts to a $k(x)$-rational point of $X_{1}\left(\ell^{n}\right)$


## Abstract modular curves

An explicit bound on $\ell$-primary torsion of one dimensional families of abelian varieties in
positive characteristic

Emiliano
Ambrosi

Statement
Abstract
modular
curves
Genus and
gonality
Controlling the gonality

## Proposition

There exists an explicit constant $C:=C(Y \rightarrow X, \ell)$ such that for $n \geq C$ the set $X_{1}\left(\ell^{n}\right)(k)$ is finite.

## Genus and gonality

An explicit bound on $\ell$-primary torsion of one dimensional families of abelian varieties in
positive characteristic

Emiliano
Ambrosi

## Fact

There exists a constant $g:=g(k)$ such that for every smooth proper curve $C$ of genus $\geq g$, the set $C(k)$ is finite

## Genus and gonality

An explicit
bound on $\ell$-primary torsion of one dimensional families of abelian varieties in
positive characteristic

Emiliano
Ambrosi

Statement
Abstract
modular
curves
Genus and gonality gonality

## Fact

There exists a constant $g:=g(k)$ such that for every smooth proper curve $C$ of genus $\geq g$, the set $C(k)$ is finite

## Remark

The constant $g$ is easy to compute.

## Genus and gonality

An explicit bound on $\ell$-primary torsion of one dimensional families of abelian varieties in
positive characteristic

Emiliano
Ambrosi

Statement
Abstract
modular
curves
Genus and gonality

Controlling the gonality

## Definition

$C$ smooth proper connected curve, the $k$-gonality of $C, \gamma_{C, k}$ is

$$
\min \left\{\operatorname{Deg}(f) \mid f: C \rightarrow \mathbb{P}_{k}^{1}\right\}
$$

## Genus and gonality

An explicit bound on $\ell$-primary torsion of one dimensional families of abelian varieties in
positive characteristic

Emiliano
Ambrosi

Statement
Abstract
modular
curves
Genus and gonality

Controlling the gonality

## Definition

$C$ smooth proper connected curve, the $k$-gonality of $C, \gamma_{C, k}$ is

$$
\min \left\{\operatorname{Deg}(f) \mid f: C \rightarrow \mathbb{P}_{k}^{1}\right\}
$$

## Lemma

If $C$ has a rational point then $g_{C} \geq \gamma_{C, k}-1$.

## Key lemma

An explicit bound on $\ell$-primary torsion of one dimensional families of abelian varieties in positive characteristic

Emiliano
Ambrosi

Statement
Abstract
modular
curves
Genus and
gonality
Controlling the gonality
$\square$ Assume from now on that $k$ is a finite field.

## Key lemma

An explicit bound on $\ell$-primary torsion of one dimensional
families of
abelian
varieties in
positive characteristic

Emiliano
Ambrosi

Statement
Abstract
modular
curves
Genus and gonality

Controlling the gonality

■ Assume from now on that $k$ is a finite field.
$\square$ For $x \in|X|, \pi_{1}(x) \simeq \hat{\mathbb{Z}}$ generated by the Frobenius $F_{x}$.

## Key lemma

An explicit
bound on
$\ell$-primary
torsion of one dimensional
families of
abelian
varieties in
positive
characteristic
Emiliano
Ambrosi

Statement
Abstract
modular
curves
Genus and gonality
Controlling the gonality

- Assume from now on that $k$ is a finite field.
$\square$ For $x \in|X|, \pi_{1}(x) \simeq \hat{\mathbb{Z}}$ generated by the Frobenius $F_{x}$.
■ $C$ smooth proper $k$-curve. Write

$$
D_{C}:=\{[k(c): k]|c \in| C \mid\} \subseteq \mathbb{Z}
$$

## Key lemma

An explicit
bound on $\ell$-primary torsion of one dimensional families of abelian varieties in
positive characteristic

Emiliano
Ambrosi

Statement
Abstract
modular
curves
Genus and gonality

Controlling the gonality

- Assume from now on that $k$ is a finite field.
$\square$ For $x \in|X|, \pi_{1}(x) \simeq \hat{\mathbb{Z}}$ generated by the Frobenius $F_{x}$.
- $C$ smooth proper $k$-curve. Write

$$
D_{C}:=\{[k(c): k]|c \in| C \mid\} \subseteq \mathbb{Z}
$$

## Lemma (Cadoret-Tamagawa)

Fix $d \in \mathbb{Z}$. If $D_{C} \subseteq \mathbb{Z}_{\geq d} \cup \bigcup_{n \geq 0} \ell^{n}$ then $\gamma_{C} \geq \frac{d}{2}$

## Proof of the lemma

An explicit bound on $\ell$-primary torsion of one dimensional families of abelian varieties in positive characteristic

$$
\text { ■ } f: C \rightarrow \mathbb{P}_{k}^{1} \text { with } \operatorname{deg}(f)<d / 2 ;
$$

## Emiliano

Ambrosi

Statement
Abstract
modular
curves
Genus and gonality
Controlling the gonality

## Proof of the lemma

An explicit bound on $\ell$-primary torsion of one dimensional families of abelian varieties in
positive characteristic

Emiliano
Ambrosi
■ $f: C \rightarrow \mathbb{P}_{k}^{1}$ with $\operatorname{deg}(f)<d / 2$;
■ Take $x \in \mathbb{P}_{k}^{1}$ with $[k(x): k]=2$ and $c \in f^{-1}(x)$;

Statement
Abstract
modular
curves
Genus and gonality
Controlling the gonality

## Proof of the lemma

An explicit bound on $\ell$-primary torsion of one dimensional families of abelian varieties in positive characteristic

Emiliano
Ambrosi

Statement
Abstract
modular
curves
Genus and gonality
Controlling the gonality

■ $f: C \rightarrow \mathbb{P}_{k}^{1}$ with $\operatorname{deg}(f)<d / 2$;
■ Take $x \in \mathbb{P}_{k}^{1}$ with $[k(x): k]=2$ and $c \in f^{-1}(x)$;
■ $[k(c): k]=[k(c): k(x)][k(x): k]=[k(c): k(x)] 2$;

## Proof of the lemma

An explicit
bound on $\ell$-primary torsion of one dimensional families of abelian varieties in positive characteristic

Emiliano
Ambrosi

Statement
Abstract modular
curves
Genus and gonality
Controlling the gonality
$\square f: C \rightarrow \mathbb{P}_{k}^{1}$ with $\operatorname{deg}(f)<d / 2$;
■ Take $x \in \mathbb{P}_{k}^{1}$ with $[k(x): k]=2$ and $c \in f^{-1}(x)$;
■ $[k(c): k]=[k(c): k(x)][k(x): k]=[k(c): k(x)] 2$;
■ So $[k(c): k(x)] 2 \in D_{C}$ but $[k(c): k(x)] 2<d$.

## Proof of the lemma

An explicit
bound on e-primary torsion of one dimensional families of abelian varieties in positive characteristic

Emiliano
Ambrosi

Statement
Abstract modular
curves
Genus and gonality
Controlling the gonality

■ $f: C \rightarrow \mathbb{P}_{k}^{1}$ with $\operatorname{deg}(f)<d / 2$;
■ Take $x \in \mathbb{P}_{k}^{1}$ with $[k(x): k]=2$ and $c \in f^{-1}(x)$;
■ $[k(c): k]=[k(c): k(x)][k(x): k]=[k(c): k(x)] 2$;
■ So $[k(c): k(x)] 2 \in D_{C}$ but $[k(c): k(x)] 2<d$.
■ This is in contradiction with $D_{C} \subseteq \mathbb{Z}_{\geq d} \cup \bigcup_{n \geq 0} \ell^{n}$.

## Proof of the proposition

An explicit bound on $\ell$-primary torsion of one dimensional families of abelian varieties in positive characteristic

Emiliano
Ambrosi

Statement
Abstract
modular
curves
Genus and gonality

Controlling the gonality

■ $m_{n} \in T_{\ell \infty}\left(A_{\bar{\eta}}\right) / \ell^{n}$ of exact order $\ell^{n}$

## Proof of the proposition

An explicit bound on $\ell$-primary torsion of one dimensional families of abelian varieties in positive characteristic

Ambrosi

Statement
Abstract
modular
curves
Genus and gonality

Controlling the gonality

## Proof of the proposition

An explicit
bound on
$\ell$-primary
torsion of one dimensional families of abelian varieties in
positive characteristic

Emiliano
Ambrosi

■ $m_{n} \in T_{\ell \infty}\left(A_{\bar{\eta}}\right) / \ell^{n}$ of exact order $\ell^{n}$
■ $X_{1}\left(m_{n}\right)^{c m p}$ smooth compactification of $X_{1}\left(m_{n}\right)$;
■ Thanks to the lemma, it is enough to control the following quantity:
Statement
Abstract
modular
curves
Genus and
gonality
Controlling the gonality

## Proof of the proposition

An explicit
bound on
$\ell$-primary
torsion of one dimensional families of abelian varieties in
positive characteristic

Emiliano
Ambrosi

Statement
Abstract
modular
curves
Genus and
gonality
Controlling the gonality

■ $m_{n} \in T_{\ell \infty}\left(A_{\bar{\eta}}\right) / \ell^{n}$ of exact order $\ell^{n}$

- $X_{1}\left(m_{n}\right)^{\mathrm{cmp}}$ smooth compactification of $X_{1}\left(m_{n}\right)$;

■ Thanks to the lemma, it is enough to control the following quantity:
■ [k( $\left.\left.x_{n}\right): k\right]$ for $x_{n} \in X_{m_{n}}$.

## Proof of the proposition

An explicit
bound on
$\ell$-primary
torsion of one dimensional
families of
abelian
varieties in
positive
characteristic
Emiliano
Ambrosi

Statement
Abstract modular
curves
Genus and
gonality
Controlling the gonality

■ $m_{n} \in T_{\ell \infty}\left(A_{\bar{\eta}}\right) / \ell^{n}$ of exact order $\ell^{n}$

- $X_{1}\left(m_{n}\right)^{\mathrm{cmp}}$ smooth compactification of $X_{1}\left(m_{n}\right)$;

■ Thanks to the lemma, it is enough to control the following quantity:
■ [k( $\left.\left.x_{n}\right): k\right]$ for $x_{n} \in X_{m_{n}}$.
■ Replacing $X$ with a finite étale cover, we may assume that the image $\Pi_{\ell^{\infty}}$ of $\rho_{\ell}$ is pro- $\ell$ and that $x \in\left|X^{c m p}\right|-|X|$ are $k$-rational.

## Proof of the proposition

An explicit bound on $\ell$-primary torsion of one dimensional families of abelian varieties in positive characteristic

Emiliano
Ambrosi

Statement
Abstract
modular
curves
Genus and gonality
Controlling the gonality
$\square$ Pick $x_{n} \in X_{1}\left(m_{n}\right)^{c m p}$ with image $x$ in $|X|$;

## Proof of the proposition

An explicit bound on $\ell$-primary torsion of one dimensional families of abelian varieties in
positive characteristic

Emiliano
Ambrosi

Statement
Abstract
modular
curves
Genus and gonality
Controlling the gonality
$\square$ Pick $x_{n} \in X_{1}\left(m_{n}\right)^{c m p}$ with image $x$ in $|X|$;
■ If $x \in\left|X^{\mathrm{cmp}}\right|-|X|$, since $k(x)=k$ and $\Pi_{\ell \infty}$ is pro- $\ell$, we have that $\left[k\left(X_{n}\right): k\right]$ is a power of $\ell$;

## Proof of the proposition

An explicit
bound on
$\ell$-primary
torsion of one dimensional families of abelian varieties in
positive characteristic

Emiliano
Ambrosi

Statement
Abstract
modular
curves
Genus and gonality
Controlling the gonality

■ Pick $x_{n} \in X_{1}\left(m_{n}\right)^{c m p}$ with image $x$ in $|X|$;
$\square$ If $x \in\left|X^{\mathrm{cmp}}\right|-|X|$, since $k(x)=k$ and $\Pi_{\ell \infty}$ is pro- $\ell$, we have that $\left[k\left(X_{n}\right): k\right]$ is a power of $\ell$;

- Assume $x \in|X|, \alpha_{x, i}$ eigenvalues of Frobenius $F_{X}$ acting on $T_{\ell \infty}\left(A_{\bar{x}}\right)$;


## Proof of the proposition

An explicit
bound on
$\ell$-primary
torsion of one dimensional families of abelian varieties in
positive characteristic

Emiliano
Ambrosi

Statement
Abstract
modular
curves
Genus and gonality
Controlling the gonality

■ Pick $x_{n} \in X_{1}\left(m_{n}\right)^{c m p}$ with image $x$ in $|X|$;
$\square$ If $x \in\left|X^{\mathrm{cmp}}\right|-|X|$, since $k(x)=k$ and $\Pi_{\ell \infty}$ is pro- $\ell$, we have that $\left[k\left(X_{n}\right): k\right]$ is a power of $\ell$;

- Assume $x \in|X|, \alpha_{x, i}$ eigenvalues of Frobenius $F_{X}$ acting on $T_{\ell \infty}\left(A_{\bar{x}}\right)$;
■ $m_{n} \in\left(T_{\ell \infty}\left(A_{x}\right) / \ell^{n}\right)^{\pi_{1}\left(x_{n}\right)}$;


## Proof of the proposition

An explicit
bound on
$\ell$-primary
torsion of one dimensional families of abelian varieties in
positive characteristic

Emiliano
Ambrosi

Statement
Abstract
modular
curves
Genus and
gonality
Controlling the gonality

■ Pick $x_{n} \in X_{1}\left(m_{n}\right)^{c m p}$ with image $x$ in $|X|$;
$\square$ If $x \in\left|X^{\mathrm{cmp}}\right|-|X|$, since $k(x)=k$ and $\Pi_{\ell \infty}$ is pro- $\ell$, we have that $\left[k\left(X_{n}\right): k\right]$ is a power of $\ell$;
$\square$ Assume $x \in|X|, \alpha_{x, i}$ eigenvalues of Frobenius $F_{X}$ acting on $T_{\ell \infty}\left(A_{\bar{x}}\right)$;

- $m_{n} \in\left(T_{\ell \infty}\left(A_{x}\right) / \ell^{n}\right)^{\pi_{1}\left(x_{n}\right)}$;

■ Since $m_{n}$ is of exact order $\ell^{n}$

$$
\ell^{n} \mid \prod_{1 \leq i \leq 2 g}\left(1-\alpha_{x, i}^{\left[k\left(x_{n}\right): k(x)\right]}\right)
$$

## Proof of the proposition

An explicit
bound on
$\ell$-primary
torsion of one dimensional families of abelian varieties in positive characteristic

Emiliano
Ambrosi

Statement
Abstract
modular
curves
Genus and
gonality
Controlling the gonality

■ Pick $x_{n} \in X_{1}\left(m_{n}\right)^{c m p}$ with image $x$ in $|X|$;
$\square$ If $x \in\left|X^{\mathrm{cmp}}\right|-|X|$, since $k(x)=k$ and $\Pi_{\ell \infty}$ is pro- $\ell$, we have that $\left[k\left(X_{n}\right): k\right]$ is a power of $\ell$;
$\square$ Assume $x \in|X|, \alpha_{x, i}$ eigenvalues of Frobenius $F_{X}$ acting on $T_{\ell \infty}\left(A_{\bar{x}}\right)$;
■ $m_{n} \in\left(T_{\ell \infty}\left(A_{x}\right) / \ell^{n}\right)^{\pi_{1}\left(x_{n}\right)}$;
■ Since $m_{n}$ is of exact order $\ell^{n}$

$$
\ell^{n} \mid \prod_{1 \leq i \leq 2 g}\left(1-\alpha_{x, i}^{\left[k\left(x_{n}\right): k(x)\right]}\right)
$$

$■ \ell^{n} \leq \prod_{1 \leq i \leq 2 g}\left(1+\left|\alpha_{x, i}\right|^{\left[k\left(x_{n}\right): k(x)\right]}\right)$.

## Using the Weil conjectures

An explicit bound on $\ell$-primary torsion of one dimensional families of abelian varieties in
positive characteristic

Emiliano
Ambrosi

Statement
Abstract
modular
curves
Genus and
gonality
Controlling the gonality

## Fact (Weil conjectures)

$\alpha_{x, i}$ has (complex) absolute value $|k(x)|^{1 / 2}$.

## Using the Weil conjectures

An explicit bound on $\ell$-primary torsion of one dimensional families of abelian varieties in positive characteristic

Emiliano
Ambrosi

Statement
Abstract
modular
curves
Genus and
gonality
Controlling the gonality

## Fact (Weil conjectures)

$\alpha_{x, i}$ has (complex) absolute value $|k(x)|^{1 / 2}$.

## End of the proof

$$
\square \ell^{n} \leq \prod_{1 \leq i \leq 2 g}\left(1+\left|\alpha_{x, i}\right|^{\left[k\left(x_{n}\right): k(x)\right]}\right)
$$

## Using the Weil conjectures

An explicit bound on $\ell$-primary torsion of one dimensional families of abelian varieties in positive characteristic

Emiliano
Ambrosi

Statement
Abstract
modular
curves
Genus and gonality
Controlling the gonality

## Fact (Weil conjectures)

$\alpha_{x, i}$ has (complex) absolute value $|k(x)|^{1 / 2}$.

## End of the proof

$$
\begin{aligned}
& ■ \ell^{n} \leq \prod_{1 \leq i \leq 2 g}\left(1+\left|\alpha_{x, i}\right|^{\left[k\left(x_{n}\right): k(x)\right]}\right) . \\
& \quad \ell^{n} \leq \prod_{1 \leq i \leq 2 g}\left(1+|k(x)|^{1 / 2\left[k\left(x_{n}\right): k(x)\right]}\right)= \\
& \quad\left(1+|k|^{1 / 2\left[k\left(x_{n}\right): k\right]}\right)^{2 g} ;
\end{aligned}
$$

## Using the Weil conjectures

An explicit bound on $\ell$-primary torsion of one dimensional families of abelian varieties in positive characteristic

Emiliano
Ambrosi

Statement
Abstract
modular
curves
Genus and
gonality
Controlling the gonality

## Fact (Weil conjectures)

$\alpha_{x, i}$ has (complex) absolute value $|k(x)|^{1 / 2}$.

## End of the proof

- $\ell^{n} \leq \prod_{1 \leq i \leq 2 g}\left(1+\left|\alpha_{x, i}\right|^{\left.\left[k\left(x_{n}\right): k(x)\right]\right]}\right)$.
- $\ell^{n} \leq \prod_{1 \leq i \leq 2 g}\left(1+|k(x)|^{1 / 2\left[k\left(x_{n}\right): k(x)\right]}\right)=$
$\left(1+|k|^{1 / 2\left[\bar{k}\left(x_{n}\right): k\right]}\right)^{2 g}$;
- and so

$$
\left[k\left(x_{n}\right): k\right] \geq 2 \frac{\ln \left(\ell^{n / 2 g}-1\right)}{\ln (|k|)}
$$

