Geometry and arithmetic in families of varieties

Emiliano Ambrosi

Oberseminar (MPIM)

24 October 2019

Arithmetic geometry

- k field of characteristic $p \geq 0$ and $Y \subseteq \mathbb{P}^{n}$ smooth projective k-variety;

Arithmetic geometry

- k field of characteristic $p \geq 0$ and $Y \subseteq \mathbb{P}^{n}$ smooth projective k-variety;
- Y zero locus of homogeneous polynomials in $k\left[x_{0}, \ldots, x_{n}\right]$;

Arithmetic geometry

- k field of characteristic $p \geq 0$ and $Y \subseteq \mathbb{P}^{n}$ smooth projective k-variety;
- Y zero locus of homogeneous polynomials in $k\left[x_{0}, \ldots, x_{n}\right]$;
- $Y(k):=\left\{\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{P}_{k}^{n} \mid f\left(a_{1}, \ldots, a_{n}\right)=0\right\} ;$

Arithmetic geometry

- k field of characteristic $p \geq 0$ and $Y \subseteq \mathbb{P}^{n}$ smooth projective k-variety;
- Y zero locus of homogeneous polynomials in $k\left[x_{0}, \ldots, x_{n}\right]$;
- $Y(k):=\left\{\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{P}_{k}^{n} \mid f\left(a_{1}, \ldots, a_{n}\right)=0\right\} ;$

Cubic surface

We study:

- Arithmetic:

We study:

- Arithmetic:
- $k=\mathbb{Q}$, is $Y(\mathbb{Q}) \neq \emptyset$?

We study:

- Arithmetic:
- $k=\mathbb{Q}$, is $Y(\mathbb{Q}) \neq \emptyset$?
- $k=\mathbb{Q}$, is $Y(\mathbb{Q})$ finite?

We study:

- Arithmetic:
- $k=\mathbb{Q}$, is $Y(\mathbb{Q}) \neq \emptyset$?
- $k=\mathbb{Q}$, is $Y(\mathbb{Q})$ finite?
- Same questions with more exotic arithmetic fields:

$$
k=\mathbb{Q}(T), \mathbb{F}_{p}, \mathbb{F}_{p}(T)
$$

We study:

- Arithmetic:
- $k=\mathbb{Q}$, is $Y(\mathbb{Q}) \neq \emptyset$?
- $k=\mathbb{Q}$, is $Y(\mathbb{Q})$ finite?
- Same questions with more exotic arithmetic fields:

$$
k=\mathbb{Q}(T), \mathbb{F}_{p}, \mathbb{F}_{p}(T)
$$

- Geometry:

We study:

- Arithmetic:
- $k=\mathbb{Q}$, is $Y(\mathbb{Q}) \neq \emptyset$?
- $k=\mathbb{Q}$, is $Y(\mathbb{Q})$ finite?
- Same questions with more exotic arithmetic fields:

$$
k=\mathbb{Q}(T), \mathbb{F}_{p}, \mathbb{F}_{p}(T)
$$

- Geometry:
- $k=\mathbb{C}$, what is the topological space $Y(\mathbb{C})$?

We study:

- Arithmetic:
- $k=\mathbb{Q}$, is $Y(\mathbb{Q}) \neq \emptyset$?
- $k=\mathbb{Q}$, is $Y(\mathbb{Q})$ finite?
- Same questions with more exotic arithmetic fields:

$$
k=\mathbb{Q}(T), \mathbb{F}_{p}, \mathbb{F}_{p}(T)
$$

- Geometry:
- $k=\mathbb{C}$, what is the topological space $Y(\mathbb{C})$?
- How many lines $Y(\mathbb{C})$ contain?

We study:

- Arithmetic:
- $k=\mathbb{Q}$, is $Y(\mathbb{Q}) \neq \emptyset$?
- $k=\mathbb{Q}$, is $Y(\mathbb{Q})$ finite?
- Same questions with more exotic arithmetic fields:

$$
k=\mathbb{Q}(T), \mathbb{F}_{p}, \mathbb{F}_{p}(T)
$$

- Geometry:
- $k=\mathbb{C}$, what is the topological space $Y(\mathbb{C})$?
- How many lines $Y(\mathbb{C})$ contain?
- Same questions for every algebraically closed field $k=\overline{\mathbb{Q}}(T), \overline{\mathbb{F}_{p}}, \overline{\mathbb{F}_{p}(T)}$.

We study:

- Arithmetic:
- $k=\mathbb{Q}$, is $Y(\mathbb{Q}) \neq \emptyset$?
- $k=\mathbb{Q}$, is $Y(\mathbb{Q})$ finite?
- Same questions with more exotic arithmetic fields:

$$
k=\mathbb{Q}(T), \mathbb{F}_{p}, \mathbb{F}_{p}(T)
$$

- Geometry:
- $k=\mathbb{C}$, what is the topological space $Y(\mathbb{C})$?
- How many lines $Y(\mathbb{C})$ contain?
- Same questions for every algebraically closed field $k=\overline{\mathbb{Q}(T)}, \overline{\mathbb{F}_{p}}, \overline{\mathbb{F}_{p}(T)}$.
- Relation between geometry and arithmetic:

We study:

- Arithmetic:
- $k=\mathbb{Q}$, is $Y(\mathbb{Q}) \neq \emptyset$?
- $k=\mathbb{Q}$, is $Y(\mathbb{Q})$ finite?
- Same questions with more exotic arithmetic fields:

$$
k=\mathbb{Q}(T), \mathbb{F}_{p}, \mathbb{F}_{p}(T)
$$

- Geometry:
- $k=\mathbb{C}$, what is the topological space $Y(\mathbb{C})$?
- How many lines $Y(\mathbb{C})$ contain?
- Same questions for every algebraically closed field $k=\overline{\mathbb{Q}(T)}, \overline{\mathbb{F}_{p}}, \overline{\mathbb{F}_{p}(T)}$.
- Relation between geometry and arithmetic:
- $\mathbb{Q} \hookrightarrow \mathbb{C}$: can we relate $Y(\mathbb{Q})$ and $Y(\mathbb{C})$?

We study:

- Arithmetic:
- $k=\mathbb{Q}$, is $Y(\mathbb{Q}) \neq \emptyset$?
- $k=\mathbb{Q}$, is $Y(\mathbb{Q})$ finite?
- Same questions with more exotic arithmetic fields:

$$
k=\mathbb{Q}(T), \mathbb{F}_{p}, \mathbb{F}_{p}(T)
$$

- Geometry:
- $k=\mathbb{C}$, what is the topological space $Y(\mathbb{C})$?
- How many lines $Y(\mathbb{C})$ contain?
- Same questions for every algebraically closed field $k=\overline{\mathbb{Q}(T)}, \overline{\mathbb{F}_{p}}, \overline{\mathbb{F}_{p}(T)}$.
- Relation between geometry and arithmetic:
- $\mathbb{Q} \hookrightarrow \mathbb{C}$: can we relate $Y(\mathbb{Q})$ and $Y(\mathbb{C})$?
- Theorem (Faltings '83):
$k=\mathbb{Q}, Y$ algebraic curve. If $Y(\mathbb{C})$ is not homeomorphic to a sphere or a torus, then $Y(\mathbb{Q})$ is finite.

We study:

- Arithmetic:
- $k=\mathbb{Q}$, is $Y(\mathbb{Q}) \neq \emptyset$?
- $k=\mathbb{Q}$, is $Y(\mathbb{Q})$ finite?
- Same questions with more exotic arithmetic fields:

$$
k=\mathbb{Q}(T), \mathbb{F}_{p}, \mathbb{F}_{p}(T)
$$

- Geometry:
- $k=\mathbb{C}$, what is the topological space $Y(\mathbb{C})$?
- How many lines $Y(\mathbb{C})$ contain?
- Same questions for every algebraically closed field $k=\overline{\mathbb{Q}(T)}, \overline{\mathbb{F}_{p}}, \overline{\mathbb{F}_{p}(T)}$.
- Relation between geometry and arithmetic:
- $\mathbb{Q} \hookrightarrow \mathbb{C}$: can we relate $Y(\mathbb{Q})$ and $Y(\mathbb{C})$?
- Theorem (Faltings '83):
$k=\mathbb{Q}, Y$ algebraic curve. If $Y(\mathbb{C})$ is not homeomorphic to a sphere or a torus, then $Y(\mathbb{Q})$ is finite.
- $k \hookrightarrow \bar{k}$: can we relate $Y(k)$ and $Y(\bar{k})$?

Linearisation

- Varieties are too complicated, geometry is too complicated, arithmetic is too complicated.

Linearisation

- Varieties are too complicated, geometry is too complicated, arithmetic is too complicated.
- So one can try to linearise them:

Linearisation

- Varieties are too complicated, geometry is too complicated, arithmetic is too complicated.
- So one can try to linearise them:
$\{$ Varieties $\} \longrightarrow\{$ Vector spaces $\}$

Linearisation

- Varieties are too complicated, geometry is too complicated, arithmetic is too complicated.
- So one can try to linearise them:

$$
\{\text { Varieties }\} \longrightarrow\{\text { Vector spaces }\}
$$

$\{$ Varieties $\} \longrightarrow$ \{Vector spaces + extra structure $\}$

Linearisation

- Varieties are too complicated, geometry is too complicated, arithmetic is too complicated.
- So one can try to linearise them:

$$
\{\text { Varieties }\} \longrightarrow\{\text { Vector spaces }\}
$$

$\{$ Varieties $\} \longrightarrow$ \{Vector spaces + extra structure $\}$

Extra structure

Action of a group, filtration, an automorphism, etc...

Néron Severi group

NS(Y)

- Divisor $Z \subseteq Y:=$ codimension 1 subvariety (e.g. curve in surface, surface in threefold)

Néron Severi group

NS(Y)

- Divisor $Z \subseteq Y:=$ codimension 1 subvariety (e.g. curve in surface, surface in threefold)
- $N S(Y) \otimes \mathbb{Q}:=$ Néron-Severi group of Y :

Néron Severi group

NS(Y)

- Divisor $Z \subseteq Y:=$ codimension 1 subvariety (e.g. curve in surface, surface in threefold)
- $N S(Y) \otimes \mathbb{Q}:=$ Néron-Severi group of Y :
- $Z^{1}(Y)$ free \mathbb{Q}-vector space on divisors of Y

Néron Severi group

NS(Y)

- Divisor $Z \subseteq Y:=$ codimension 1 subvariety (e.g. curve in surface, surface in threefold)
- $N S(Y) \otimes \mathbb{Q}:=$ Néron-Severi group of Y :
- $Z^{1}(Y)$ free \mathbb{Q}-vector space on divisors of Y
- equivalence relation $\sim_{\text {num }}: Z \sim_{\text {num }} Z^{\prime}$ if for every curve $C \subseteq Y$

$$
|C \cap Z|=\left|C \cap Z^{\prime}\right| ;
$$

Néron Severi group

NS(Y)

- Divisor $Z \subseteq Y:=$ codimension 1 subvariety (e.g. curve in surface, surface in threefold)
- $N S(Y) \otimes \mathbb{Q}:=$ Néron-Severi group of Y :
- $Z^{1}(Y)$ free \mathbb{Q}-vector space on divisors of Y
- equivalence relation $\sim_{\text {num }}: Z \sim_{\text {num }} Z^{\prime}$ if for every curve $C \subseteq Y$

$$
|C \cap Z|=\left|C \cap Z^{\prime}\right| ;
$$

- $N S(Y) \otimes \mathbb{Q}:=Z^{1}(Y) / \sim$; finite dimensional \mathbb{Q} vector space

Néron Severi group

Examples

- $N S\left(\mathbb{P}^{n}\right) \otimes \mathbb{Q} \simeq \mathbb{Q}$, generated by an hyperplane;

Néron Severi group

Examples

- $N S\left(\mathbb{P}^{n}\right) \otimes \mathbb{Q} \simeq \mathbb{Q}$, generated by an hyperplane;
- $N S\left(\mathbb{P}^{1} \times \mathbb{P}^{1}\right) \otimes \mathbb{Q} \simeq \mathbb{Q} \times \mathbb{Q}$, generated by $\mathbb{P}^{1} \times\{*\}$ and $\{*\} \times \mathbb{P}^{1}$

Néron Severi group

Examples

- $N S\left(\mathbb{P}^{n}\right) \otimes \mathbb{Q} \simeq \mathbb{Q}$, generated by an hyperplane;
- $N S\left(\mathbb{P}^{1} \times \mathbb{P}^{1}\right) \otimes \mathbb{Q} \simeq \mathbb{Q} \times \mathbb{Q}$, generated by $\mathbb{P}^{1} \times\{*\}$ and $\{*\} \times \mathbb{P}^{1}$

Base change

- $k \hookrightarrow \bar{k}, N S(Y) \otimes \mathbb{Q} \subseteq N S\left(Y_{\bar{k}}\right) \otimes \mathbb{Q}$.

Néron Severi group

Examples

- $N S\left(\mathbb{P}^{n}\right) \otimes \mathbb{Q} \simeq \mathbb{Q}$, generated by an hyperplane;
- $N S\left(\mathbb{P}^{1} \times \mathbb{P}^{1}\right) \otimes \mathbb{Q} \simeq \mathbb{Q} \times \mathbb{Q}$, generated by $\mathbb{P}^{1} \times\{*\}$ and $\{*\} \times \mathbb{P}^{1}$

Base change

- $k \hookrightarrow \bar{k}, N S(Y) \otimes \mathbb{Q} \subseteq N S\left(Y_{\bar{k}}\right) \otimes \mathbb{Q}$.
- $N S\left(\mathbb{P}^{n}\right) \otimes \mathbb{Q} \simeq N S\left(\mathbb{P} \frac{n}{k}\right) \otimes \mathbb{Q} \simeq \mathbb{Q}$

Néron Severi group

Examples

- $N S\left(\mathbb{P}^{n}\right) \otimes \mathbb{Q} \simeq \mathbb{Q}$, generated by an hyperplane;
- $N S\left(\mathbb{P}^{1} \times \mathbb{P}^{1}\right) \otimes \mathbb{Q} \simeq \mathbb{Q} \times \mathbb{Q}$, generated by $\mathbb{P}^{1} \times\{*\}$ and $\{*\} \times \mathbb{P}^{1}$

Base change

- $k \hookrightarrow \bar{k}, N S(Y) \otimes \mathbb{Q} \subseteq N S\left(Y_{\bar{k}}\right) \otimes \mathbb{Q}$.
- $N S\left(\mathbb{P}^{n}\right) \otimes \mathbb{Q} \simeq N S\left(\mathbb{P}_{\bar{k}}^{n}\right) \otimes \mathbb{Q} \simeq \mathbb{Q}$
$k=\mathbb{Q}$,
$Y:=x^{2}+y^{2}+z^{2}+w^{2}=(x+i y)(x-i y)+(z+i w)(z-i w)=0$

Néron Severi group

Examples

- $N S\left(\mathbb{P}^{n}\right) \otimes \mathbb{Q} \simeq \mathbb{Q}$, generated by an hyperplane;
- $N S\left(\mathbb{P}^{1} \times \mathbb{P}^{1}\right) \otimes \mathbb{Q} \simeq \mathbb{Q} \times \mathbb{Q}$, generated by $\mathbb{P}^{1} \times\{*\}$ and $\{*\} \times \mathbb{P}^{1}$

Base change

- $k \hookrightarrow \bar{k}, N S(Y) \otimes \mathbb{Q} \subseteq N S\left(Y_{\bar{k}}\right) \otimes \mathbb{Q}$.
- $N S\left(\mathbb{P}^{n}\right) \otimes \mathbb{Q} \simeq N S\left(\mathbb{P}_{\bar{k}}^{n}\right) \otimes \mathbb{Q} \simeq \mathbb{Q}$
- $k=\mathbb{Q}$,

$$
Y:=x^{2}+y^{2}+z^{2}+w^{2}=(x+i y)(x-i y)+(z+i w)(z-i w)=0
$$

- $Y_{\bar{k}} \simeq \mathbb{P}^{1} \times \mathbb{P}^{1} \Rightarrow N S\left(Y_{\bar{k}}\right) \otimes \mathbb{Q} \simeq \mathbb{Q}^{2}$;

Néron Severi group

Examples

- $N S\left(\mathbb{P}^{n}\right) \otimes \mathbb{Q} \simeq \mathbb{Q}$, generated by an hyperplane;
- $N S\left(\mathbb{P}^{1} \times \mathbb{P}^{1}\right) \otimes \mathbb{Q} \simeq \mathbb{Q} \times \mathbb{Q}$, generated by $\mathbb{P}^{1} \times\{*\}$ and $\{*\} \times \mathbb{P}^{1}$

Base change

- $k \hookrightarrow \bar{k}, N S(Y) \otimes \mathbb{Q} \subseteq N S\left(Y_{\bar{k}}\right) \otimes \mathbb{Q}$.
- $N S\left(\mathbb{P}^{n}\right) \otimes \mathbb{Q} \simeq N S\left(\mathbb{P}_{\bar{k}}^{n}\right) \otimes \mathbb{Q} \simeq \mathbb{Q}$
- $k=\mathbb{Q}$,

$$
Y:=x^{2}+y^{2}+z^{2}+w^{2}=(x+i y)(x-i y)+(z+i w)(z-i w)=0
$$

- $Y_{\bar{k}} \simeq \mathbb{P}^{1} \times \mathbb{P}^{1} \Rightarrow N S\left(Y_{\bar{k}}\right) \otimes \mathbb{Q} \simeq \mathbb{Q}^{2}$;
- $N S(Y)=\mathbb{Q}$.

Families

$\left\{Y_{x}\right\}_{x \in X} / k$ family of smooth projective varieties \leftrightarrow smooth projective morphism $f: Y \rightarrow X$.

Families

$\left\{Y_{x}\right\}_{x \in X} / k$ family of smooth projective varieties \leftrightarrow smooth projective morphism $f: Y \rightarrow X$.

Question

How do $N S\left(Y_{x}\right) \otimes \mathbb{Q}$ and $N S\left(Y_{\bar{x}}\right) \otimes \mathbb{Q}$ vary with $x \in X$?

Families

$\left\{Y_{x}\right\}_{x \in X} / k$ family of smooth projective varieties \leftrightarrow smooth projective morphism $f: Y \rightarrow X$.

Question

How do $N S\left(Y_{x}\right) \otimes \mathbb{Q}$ and $N S\left(Y_{\bar{x}}\right) \otimes \mathbb{Q}$ vary with $x \in X$?

$$
\begin{aligned}
& Y_{\bar{x}} \longrightarrow Y_{X} \longrightarrow Y \\
& \underset{k(x)}{\downarrow} \square \underset{k(x)}{\downarrow} \xrightarrow{\square} \underset{X}{\square}
\end{aligned}
$$

Families

$\left\{Y_{x}\right\}_{x \in X} / k$ family of smooth projective varieties \leftrightarrow smooth projective morphism $f: Y \rightarrow X, \eta \in X$ generic point.

Question

How do $N S\left(Y_{x}\right) \otimes \mathbb{Q}$ and $N S\left(Y_{\bar{x}}\right) \otimes \mathbb{Q}$ vary with $x \in X$?

Families

$\left\{Y_{x}\right\}_{x \in X} / k$ family of smooth projective varieties \leftrightarrow smooth projective morphism $f: Y \rightarrow X ; \eta \in X$ generic point.

Question

How do $N S\left(Y_{x}\right) \otimes \mathbb{Q}$ and $N S\left(Y_{\bar{x}}\right) \otimes \mathbb{Q}$ vary with $x \in X$?

NS-generic points

$$
\begin{array}{ccccc}
Y_{\bar{x}} \longrightarrow & Y & \longleftrightarrow & Y_{\bar{\eta}} \\
\downarrow & \square & f & \square & \downarrow \\
\overline{k(x)} & \bar{x} & X & \bar{\eta} & \frac{\downarrow}{k(\eta)}
\end{array}
$$

- Injective specialization morphism:

$$
s p_{\eta, x}: N S\left(Y_{\bar{\eta}}\right) \otimes \mathbb{Q} \hookrightarrow N S\left(Y_{\bar{x}}\right) \otimes \mathbb{Q} ;
$$

NS-generic points

$$
\begin{aligned}
& Y_{\bar{x}} \longrightarrow Y \longleftarrow Y_{\bar{\eta}}
\end{aligned}
$$

- Injective specialization morphism:

$$
s p_{\eta, x}: N S\left(Y_{\bar{\eta}}\right) \otimes \mathbb{Q} \hookrightarrow N S\left(Y_{\bar{x}}\right) \otimes \mathbb{Q} ;
$$

- Arithmetic variant:

$$
s p_{\eta, x}^{a r}: N S\left(Y_{\eta}\right) \otimes \mathbb{Q} \hookrightarrow N S\left(Y_{x}\right) \otimes \mathbb{Q} .
$$

NS-generic points

$$
\begin{aligned}
& Y_{\bar{x}} \longrightarrow Y \longleftarrow Y_{\bar{\eta}}
\end{aligned}
$$

- Injective specialization morphism:

$$
s p_{\eta, x}: N S\left(Y_{\bar{\eta}}\right) \otimes \mathbb{Q} \hookrightarrow N S\left(Y_{\bar{x}}\right) \otimes \mathbb{Q} ;
$$

- Arithmetic variant:

$$
s p_{\eta, x}^{a r}: N S\left(Y_{\eta}\right) \otimes \mathbb{Q} \hookrightarrow N S\left(Y_{x}\right) \otimes \mathbb{Q} .
$$

Definition

x NS-generic (resp. arithmetically NS-generic) if $s p_{\eta, x}\left(\right.$ resp. $s p_{\eta, x}^{a r}$) isomorphism.

NS-generic points

Questions

- Can we describe the set of (arithmetically) NS-generic closed points?

NS-generic points

Questions

- Can we describe the set of (arithmetically) NS-generic closed points?
- Is the set of (arithmetically) NS-generic closed points not empty?

NS-generic points

Questions

- Can we describe the set of (arithmetically) NS-generic closed points?
- Is the set of (arithmetically) NS-generic closed points not empty?

The answers depend on the arithmetic of k.

NS-generic points

Example 1

- $Y \subseteq \mathbb{P}^{n}$ of dimension ≥ 3;

NS-generic points

Example 1

- $Y \subseteq \mathbb{P}^{n}$ of dimension ≥ 3;
- $\left\{Y_{X}\right\}_{x \in X}$ nice pencil hyperplane sections $Y_{X} \subseteq Y$;

NS-generic points

Example 1

- $Y \subseteq \mathbb{P}^{n}$ of dimension ≥ 3;
- $\left\{Y_{x}\right\}_{x \in X}$ nice pencil hyperplane sections $Y_{X} \subseteq Y$;
- x arithmetically $N S$-generic $\Leftrightarrow N S\left(Y_{x}\right) \otimes \mathbb{Q} \simeq N S(Y) \otimes \mathbb{Q}$.

NS-generic points

Example 1

- $Y \subseteq \mathbb{P}^{n}$ of dimension ≥ 3;
- $\left\{Y_{X}\right\}_{x \in X}$ nice pencil hyperplane sections $Y_{X} \subseteq Y$;
- x arithmetically NS-generic $\Leftrightarrow N S\left(Y_{x}\right) \otimes \mathbb{Q} \simeq N S(Y) \otimes \mathbb{Q}$.

Example 1.1

- Veronese's embedding of degree 2

$$
\begin{aligned}
\mathbb{P}_{k}^{3} & \rightarrow \mathbb{P}_{k}^{9} \\
{[x: y: z: w] } & \mapsto\left[x^{2}: y^{2}: z^{2}: w^{2}: x y: x z: x w: y z: y w: z w\right] ;
\end{aligned}
$$

NS-generic points

Example 1

- $Y \subseteq \mathbb{P}^{n}$ of dimension ≥ 3;
- $\left\{Y_{X}\right\}_{x \in X}$ nice pencil hyperplane sections $Y_{X} \subseteq Y$;
- x arithmetically NS-generic $\Leftrightarrow N S\left(Y_{x}\right) \otimes \mathbb{Q} \simeq N S(Y) \otimes \mathbb{Q}$.

Example 1.1

- Veronese's embedding of degree 2

$$
\begin{aligned}
\mathbb{P}_{k}^{3} & \rightarrow \mathbb{P}_{k}^{9} \\
{[x: y: z: w] } & \mapsto\left[x^{2}: y^{2}: z^{2}: w^{2}: x y: x z: x w: y z: y w: z w\right] ;
\end{aligned}
$$

- Hyperplane section $Y_{X} \leftrightarrow$ Quadric $Q_{x} \subseteq \mathbb{P}^{3}$;

NS-generic points

Example 1

- $Y \subseteq \mathbb{P}^{n}$ of dimension ≥ 3;
- $\left\{Y_{X}\right\}_{x \in X}$ nice pencil hyperplane sections $Y_{X} \subseteq Y$;
- x arithmetically NS-generic $\Leftrightarrow N S\left(Y_{x}\right) \otimes \mathbb{Q} \simeq N S(Y) \otimes \mathbb{Q}$.

Example 1.1

- Veronese's embedding of degree 2

$$
\begin{aligned}
\mathbb{P}_{k}^{3} & \rightarrow \mathbb{P}_{k}^{9} \\
{[x: y: z: w] } & \mapsto\left[x^{2}: y^{2}: z^{2}: w^{2}: x y: x z: x w: y z: y w: z w\right] ;
\end{aligned}
$$

- Hyperplane section $Y_{x} \leftrightarrow$ Quadric $Q_{x} \subseteq \mathbb{P}^{3}$;
- $k=\bar{k} \Rightarrow Q_{x} \simeq \mathbb{P}^{1} \times \mathbb{P}^{1}$,
$N S\left(Q_{x}\right) \otimes \mathbb{Q} \simeq \mathbb{Q} \times \mathbb{Q}, \quad$ while $\quad N S\left(\mathbb{P}^{3}\right) \otimes \mathbb{Q} \simeq \mathbb{Q}$.

NS-generic points

Theorem 1 (A.)

$p>0, k$ infinite finitely generated (i.e. $\left.k=\mathbb{F}_{p}\left(T_{1}, \ldots, T_{n}\right)\right) \Rightarrow$

NS-generic points

Theorem 1 (A.)

$p>0, k$ infinite finitely generated (i.e. $\left.k=\mathbb{F}_{p}\left(T_{1}, \ldots, T_{n}\right)\right) \Rightarrow$
(1) \exists infinitely many arithmetically NS-generic points of bounded degree;

NS-generic points

Theorem 1 (A.)

$p>0, k$ infinite finitely generated (i.e. $\left.k=\mathbb{F}_{p}\left(T_{1}, \ldots, T_{n}\right)\right) \Rightarrow$
(1) \exists infinitely many arithmetically NS-generic points of bounded degree;
(2) X curve \Rightarrow all but finitely many $x \in X(k)$ NS-generic.

NS-generic points

Theorem 1 (A.)

$p>0, k$ infinite finitely generated (i.e. $\left.k=\mathbb{F}_{p}\left(T_{1}, \ldots, T_{n}\right)\right) \Rightarrow$
(1) \exists infinitely many arithmetically NS-generic points of bounded degree;
(2) X curve \Rightarrow all but finitely many $x \in X(k)$ NS-generic.

Remark ($\mathrm{p}=0$)

If $p=0$:
(1) is due to André;
(2) is due to Cadoret-Tamagawa.

NS-generic points

Problem

$N S\left(Y_{x}\right) \otimes \mathbb{Q}$ difficult to control in general, too geometric.

NS-generic points

Problem

$N S\left(Y_{X}\right) \otimes \mathbb{Q}$ difficult to control in general, too geometric.
Étale cohomology

$$
Y \longrightarrow H^{2}\left(Y_{\bar{x}}, \mathbb{Q}_{\ell}(1)\right)
$$

NS-generic points

Problem

$N S\left(Y_{x}\right) \otimes \mathbb{Q}$ difficult to control in general, too geometric.
Étale cohomology

$$
Y \longrightarrow H^{2}\left(Y_{\bar{x}}, \mathbb{Q}_{\ell}(1)\right)
$$

- for $\ell \neq p$ prime $H^{2}\left(Y_{\bar{X}}, \mathbb{Q}_{\ell}(1)\right)$ finite dimensional \mathbb{Q}_{ℓ}-vector space;

NS-generic points

Problem

$N S\left(Y_{x}\right) \otimes \mathbb{Q}$ difficult to control in general, too geometric.

Étale cohomology

$$
Y \longrightarrow H^{2}\left(Y_{\bar{x}}, \mathbb{Q}_{\ell}(1)\right)
$$

- for $\ell \neq p$ prime $H^{2}\left(Y_{\bar{x}}, \mathbb{Q}_{\ell}(1)\right)$ finite dimensional \mathbb{Q}_{ℓ}-vector space;
- $\pi_{1}(k(x)):=\operatorname{Gal}(\overline{k(x)}, k(x))$ acts (continuously) on $H^{2}\left(Y_{\bar{x}}, \mathbb{Q}_{\ell}(1)\right)$;

NS-generic points

Problem

$N S\left(Y_{x}\right) \otimes \mathbb{Q}$ difficult to control in general, too geometric.

Étale cohomology

$$
Y \longrightarrow H^{2}\left(Y_{\bar{x}}, \mathbb{Q}_{\ell}(1)\right)
$$

- for $\ell \neq p$ prime $H^{2}\left(Y_{\bar{x}}, \mathbb{Q}_{\ell}(1)\right)$ finite dimensional \mathbb{Q}_{ℓ}-vector space;
- $\pi_{1}(k(x)):=G a l(\overline{k(x)}, k(x))$ acts (continuously) on $H^{2}\left(Y_{\bar{x}}, \mathbb{Q}_{\ell}(1)\right)$;
- cycle class map $c_{Y_{x}}: N S\left(Y_{\bar{x}}\right) \otimes \mathbb{Q}_{\ell} \hookrightarrow H^{2}\left(Y_{\bar{x}}, \mathbb{Q}_{\ell}(1)\right)$.

Tate conjecture

Cycles class map

$$
c_{Y}: N S\left(Y_{X}\right) \otimes \mathbb{Q}_{\ell} \hookrightarrow H^{2}\left(Y_{\bar{X}}, \mathbb{Q}_{\ell}(1)\right)
$$

contained in the fixed points

$$
H^{2}\left(Y_{\bar{x}}, \mathbb{Q}_{\ell}(1)\right)^{\pi_{1}(k(x))} ;
$$

Tate conjecture

Cycles class map

$$
c_{Y}: N S\left(Y_{X}\right) \otimes \mathbb{Q}_{\ell} \hookrightarrow H^{2}\left(Y_{\bar{x}}, \mathbb{Q}_{\ell}(1)\right)
$$

contained in the fixed points

$$
H^{2}\left(Y_{\bar{x}}, \mathbb{Q}_{l}(1)\right)^{\pi_{1}(k(x))} ;
$$

Conjecture (Tate)

k finitely generated, $\ell \neq p$, then

$$
c_{Y}: N S\left(Y_{X}\right) \otimes \mathbb{Q}_{l} \xrightarrow{\simeq} H^{2}\left(Y_{\bar{X}}, \mathbb{Q}_{l}(1)\right)^{\pi_{1}(k(x))} .
$$

G-generic points

- $\left\{H^{2}\left(Y_{\bar{X}}, \mathbb{Q}_{\ell}(1)\right)\right\}_{x \in X} \ell$-adic local system,

G-generic points

- $\left\{H^{2}\left(Y_{\bar{X}}, \mathbb{Q}_{\ell}(1)\right)\right\}_{x \in X} \ell$-adic local system,
- e.g. representation of étale fundamental group $\pi_{1}(X)$.

G-generic points

- $\left\{H^{2}\left(Y_{\bar{x}}, \mathbb{Q}_{\ell}(1)\right)\right\}_{x \in X} \ell$-adic local system,
- e.g. representation of étale fundamental group $\pi_{1}(X)$.

$$
\pi_{1}(k(\eta)) \xrightarrow{\rho_{\ell, \eta}} G L\left(H^{2}\left(Y_{\bar{\eta}}, \mathbb{Q}_{\ell}(1)\right)\right)
$$

$$
\pi_{1}(k(x)) \xrightarrow{\rho_{\ell, x}} G L\left(H^{2}\left(Y_{\bar{x}}, \mathbb{Q}_{\ell}(1)\right)\right)
$$

G-generic points

- $\left\{H^{2}\left(Y_{\bar{x}}, \mathbb{Q}_{\ell}(1)\right)\right\}_{x \in X} \ell$-adic local system,
- e.g. representation of étale fundamental group $\pi_{1}(X)$.

$$
\begin{aligned}
& \pi_{1}(k(\eta)) \xrightarrow{\rho_{\ell, \eta}} G L\left(H^{2}\left(Y_{\bar{\eta}}, \mathbb{Q}_{\ell}(1)\right)\right) \\
& \quad \downarrow \\
& \pi_{1}(X) \\
& \quad{ }^{\downarrow} \\
& \pi_{1}(k(x)) \xrightarrow{\rho_{\ell, x}} G L\left(H^{2}\left(Y_{\bar{X}}, \mathbb{Q}_{\ell}(1)\right)\right)
\end{aligned}
$$

G-generic points

- $\left\{H^{2}\left(Y_{\bar{x}}, \mathbb{Q}_{\ell}(1)\right)\right\}_{x \in X} \ell$-adic local system,
- e.g. representation of étale fundamental group $\pi_{1}(X)$.

G-generic points

- $\left\{H^{2}\left(Y_{\bar{x}}, \mathbb{Q}_{\ell}(1)\right)\right\}_{x \in X} \ell$-adic local system,
- e.g. representation of étale fundamental group $\pi_{1}(X)$.

G-generic points

- $\left\{H^{2}\left(Y_{\bar{x}}, \mathbb{Q}_{\ell}(1)\right)\right\}_{x \in X} \ell$-adic local system,
- e.g. representation of étale fundamental group $\pi_{1}(X)$.

$$
\begin{aligned}
& \pi_{1}(k(\eta)) \xrightarrow{\rho_{\ell, \eta}} G L\left(H^{2}\left(Y_{\bar{\eta}}, \mathbb{Q}_{\ell}(1)\right)\right) \\
& \quad \downarrow \\
& \quad \pi_{1}(X) \\
& \quad{ }^{\rho_{\ell}} \\
& \pi_{1}(k(x)) \xrightarrow{\rho_{\ell, x}} G L\left(H^{2}\left(Y_{\bar{x}}, \mathbb{Q}_{\ell}(1)\right)\right)
\end{aligned}
$$

Inclusion of ℓ-adic Lie groups

$$
\rho_{\ell}\left(\pi_{1}(k(x))\right)=: \Pi_{\ell, x} \subseteq \Pi_{\ell}:=\rho_{\ell}\left(\pi_{1}(X)\right)
$$

Definition

x G-generic (resp. strictly G-generic) if $\left[\Pi_{\ell}: \Pi_{\ell, x}\right]<+\infty$ (resp. $\left.\Pi_{\ell, x}=\Pi_{\ell}\right)$

Definition

x G-generic (resp. strictly G-generic) if $\left[\Pi_{\ell}: \Pi_{\ell, x}\right]<+\infty$ (resp. $\left.\Pi_{\ell, x}=\Pi_{\ell}\right)$

Proposition (Serre)

k infinite finitely generated $\Rightarrow \exists$ infinitely many strictly G-generic points of bounded degree.

Definition

x G-generic (resp. strictly G-generic) if $\left[\Pi_{\ell}: \Pi_{\ell, x}\right]<+\infty$ (resp. $\left.\Pi_{\ell, x}=\Pi_{\ell}\right)$

Proposition (Serre)

k infinite finitely generated $\Rightarrow \exists$ infinitely many strictly G-generic points of bounded degree.

Theorem 2 (A.)

$p>0, k$ finitely generated, X curve \Rightarrow all but finitely many $x \in X(k)$ G-generic.

Definition

x G-generic (resp. strictly G-generic) if $\left[\Pi_{\ell}: \Pi_{\ell, x}\right]<+\infty$ (resp.
$\left.\Pi_{\ell, x}=\Pi_{\ell}\right)$

Proposition (Serre)

k infinite finitely generated $\Rightarrow \exists$ infinitely many strictly G-generic points of bounded degree.

Theorem 2 (A.)

$p>0, k$ finitely generated, X curve \Rightarrow all but finitely many $x \in X(k)$ G-generic.

Remark ($\mathrm{p}=0$)

If $p=0$ Theorem 2 is due to Cadoret-Tamagawa.

G-generic vs NS-generic

Tate conjecture predicts:
(Strictly) G-generic points are (arithmetically) NS-generic.

G-generic vs NS-generic

Tate conjecture predicts:
(Strictly) G-generic points are (arithmetically) NS-generic.

```
Theorem 3 (A.)
p>0,k finitely generated = (strictly) G-generic are (arithmetically)
NS-generic.
```


G-generic vs NS-generic

Tate conjecture predicts:
(Strictly) G-generic points are (arithmetically) NS-generic.

```
Theorem 3 (A.)
p>0,k finitely generated = (strictly) G-generic are (arithmetically)
NS-generic.
```


Remark ($\mathrm{p}=0$)

If $p=0$, Theorem 3 due to André.

G-generic vs NS-generic

Tate conjecture predicts:

(Strictly) G-generic points are (arithmetically) NS-generic.

Theorem 3 (A.)

$p>0, k$ finitely generated \Rightarrow (strictly) G-generic are (arithmetically) NS-generic.

Remark ($\mathrm{p}=0$)

If $p=0$, Theorem 3 due to André.

Conclusion

Existence and abundance of G-generic points (Theorem 2) + Theorem $3 \Rightarrow$ existence and abundance of NS-generic points (Theorem 1).

THANK YOU FOR

THE ATTENTION!

