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@ Geometry:
e k = C, what is the topological space Y(C)?
e How many lines Y(C) contain?
e Same questions for every algebraically closed field
k=Q(T),Fp, Fp(T).
@ Relation between geometry and arithmetic:
@ Q — C: can we relate Y(Q) and Y(C)?
o Theorem (Faltings '83):
k = Q, Y algebraic curve. If Y(C) is not homeomorphic to a sphere
or a torus, then Y(Q) is finite.
e k — k: can we relate Y(k) and Y(k)?
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@ Varieties are too complicated, geometry is too complicated,
arithmetic is too complicated.
@ So one can try to linearise them:

{Varieties} —— {Vector spaces}

14 V(Y)

{ Varieties} —— { Vector spaces + extra structure }

Y v(Y)

Action of a group, filtration, an automorphism, etc...
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e NS(P™) @ Q ~ Q, generated by an hyperplane;
o NS(P' x P') @ Q ~ Q x Q, generated by P! x {x} and {+} x P'

® k— k, NS(Y)®Q C NS(Y;) ® Q.
o NS(P")®Q =~ NS(P?) ® Q =~ Q
® k=Q,

Y =x2+y?+ 224+ w2 = (x+iy)(x —iy)+ (z+ iw)(z—iw) =0
o Yo =P xP' = NS(Y5) ® Q =~ Q%
o NS(Y)=Q.
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{Yx}xex/k family of smooth projective varieties <> smooth projective
morphism f: Y — X; n € X generic point.
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@ Injective specialization morphism:
Spy.x - NS(Y5) @ Q = NS(Yx) ® Q;
@ Arithmetic variant:

sp - NS(Y,) © Q < NS(Yx) @ Q.
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@ Injective specialization morphism:
spyx : NS(Yy) @ Q — NS(Yx) @ Q;
@ Arithmetic variant:

sp2h - NS(Y,) @ Q < NS(Yx) © Q.

Definition

x NS-generic (resp. arithmetically NS-generic) if sp;, x (resp. sp;’y)
isomorphism.
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The answers depend on the arithmetic of k.
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Example 1
@ Y C P" of dimension > 3;
@ {Yx}xex nice pencil hyperplane sections Yy C Y;
@ x arithmetically NS-generic < NS(Yx) ® Q ~ NS(Y) ® Q.
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Example 1.1
@ Veronese’s embedding of degree 2

3 . m9
Py — Py
X:y:z:wl—[xX2:y2: 22 W2 xy:Xxz:xw:yz:yw: zw];

@ Hyperplane section Yy <> Quadric Qy C P3;
@ k=k= Q~P! x P!,

NS(Qx) ®Q ~Q x Q, while NS(P?)®Q~ Q.




NS-generic points

Theorem 1 (A.)

p > 0, k infinite finitely generated (i.e. k = Fp(T1, ..., Tp)) =




NS-generic points

Theorem 1 (A.)

p > 0, k infinite finitely generated (i.e. k = Fp(T1, ..., Tp)) =

@ 3 infinitely many arithmetically NS-generic points of bounded
degree;




NS-generic points

Theorem 1 (A.)

p > 0, k infinite finitely generated (i.e. k = Fp(T1, ..., Tp)) =

@ 3 infinitely many arithmetically NS-generic points of bounded
degree;
@ X curve = all but finitely many x € X (k) NS-generic.




NS-generic points

Theorem 1 (A.)

p > 0, k infinite finitely generated (i.e. k = Fp(Tq, ..., Tn)) =

@ 3 infinitely many arithmetically NS-generic points of bounded
degree;
@ X curve = all but finitely many x € X (k) NS-generic.

Remark (p=0)

If p=0:
@ is due to André;
@ is due to Cadoret-Tamagawa.
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Etale cohomology

Y —— H(Yx, Qu(1))

e for ¢ # p prime H?( Y, Q,(1)) finite dimensional Q,-vector space;
o 71(k(x)) := Gal(k(x), k(x)) acts (continuously) on H?( Y, Q¢(1));
@ cycle class map cy, : NS(Yx) @ Q¢ — H?( Y, Qu(1)).

N,




Tate conjecture

Cycles class map

cy : NS(Yyx) @ Qp — H?(Yx, Qu(1))

contained in the fixed points

H2( Yz, Qu(1))™ (k(X));




Tate conjecture

Cycles class map
cy : NS(Yx) ® Q; — H?( Yz, Qu(1))
contained in the fixed points

H2( Yz, Qu(1))™ (k(X));

.

Conjecture (Tate)
k finitely generated, ¢ # p, then

cy : NS(Yyx) ® Q = H?( Yy, Q(1))™ (kD).
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@ {H?(Yx,Qu(1))}xex ¢-adic local system,
@ e.g. representation of étale fundamental group m+(X).

k(n)) — GL(H?(Yy,Qu(1)))

l /
I

mi(k(x)) —— GL(H?(Yx. Qu(1)))

Inclusion of ¢-adic Lie groups

pe(m1(K(x))) =: Mex € Mg := pe(m1(X))
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Proposition (Serre)

k infinite finitely generated = 3 infinitely many strictly G-generic points
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Theorem 2 (A.)

p > 0, k finitely generated, X curve = all but finitely many x € X(k)
G-generic.
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Remark (p=0)
If p =0 Theorem 2 is due to Cadoret-Tamagawa.
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G-generic vs NS-generic

Tate conjecture predicts:
(Strictly) G-generic points are (arithmetically) NS-generic.

Theorem 3 (A.)

p > 0, k finitely generated = (strictly) G-generic are (arithmetically)
NS-generic.

Remark (p=0)
If p =0, Theorem 3 due to André.

Existence and abundance of G-generic points (Theorem 2) + Theorem
3 = existence and abundance of NS-generic points (Theorem 1).
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