Geometry and arithmetic in families of varieties

Emiliano Ambrosi

Oberseminar (MPIM)

24 October 2019

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 – 釣��

k field of characteristic *p* ≥ 0 and *Y* ⊆ Pⁿ smooth projective *k*-variety;

k field of characteristic *p* ≥ 0 and *Y* ⊆ Pⁿ smooth projective *k*-variety;

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

• Y zero locus of homogeneous polynomials in k[x₀,..., x_n];

k field of characteristic *p* ≥ 0 and *Y* ⊆ Pⁿ smooth projective *k*-variety;

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

- *Y* zero locus of homogeneous polynomials in *k*[*x*₀,...,*x*_n];
- $Y(k) := \{(a_1, ..., a_n) \in \mathbb{P}_k^n | f(a_1, ..., a_n) = 0\};$

- *k* field of characteristic *p* ≥ 0 and *Y* ⊆ Pⁿ smooth projective *k*-variety;
- Y zero locus of homogeneous polynomials in k[x₀,..., x_n];

•
$$Y(k) := \{(a_1, ..., a_n) \in \mathbb{P}_k^n | f(a_1, ..., a_n) = 0\};$$

Cubic surface

• Arithmetic:

- Arithmetic:
 - $k = \mathbb{Q}$, is $Y(\mathbb{Q}) \neq \emptyset$?

• Arithmetic:

- $k = \mathbb{Q}$, is $Y(\mathbb{Q}) \neq \emptyset$?
- $k = \mathbb{Q}$, is $Y(\mathbb{Q})$ finite?

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

• Arithmetic:

- $k = \mathbb{Q}$, is $Y(\mathbb{Q}) \neq \emptyset$?
- *k* = ℚ, is *Y*(ℚ) finite?
- Same questions with more exotic arithmetic fields:

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

 $k = \mathbb{Q}(T), \mathbb{F}_{p}, \mathbb{F}_{p}(T).$

• Arithmetic:

- $k = \mathbb{Q}$, is $Y(\mathbb{Q}) \neq \emptyset$?
- $k = \mathbb{Q}$, is $Y(\mathbb{Q})$ finite?
- Same questions with more exotic arithmetic fields:

 $k = \mathbb{Q}(T), \mathbb{F}_{p}, \mathbb{F}_{p}(T).$

• Geometry:

• Arithmetic:

- $k = \mathbb{Q}$, is $Y(\mathbb{Q}) \neq \emptyset$?
- $k = \mathbb{Q}$, is $Y(\mathbb{Q})$ finite?
- Same questions with more exotic arithmetic fields:
 k = Q(T), F_p, F_p(T).

(日) (日) (日) (日) (日) (日) (日)

• Geometry:

• $k = \mathbb{C}$, what is the topological space $Y(\mathbb{C})$?

• Arithmetic:

- $k = \mathbb{Q}$, is $Y(\mathbb{Q}) \neq \emptyset$?
- $k = \mathbb{Q}$, is $Y(\mathbb{Q})$ finite?
- Same questions with more exotic arithmetic fields: $k = \mathbb{Q}(T), \mathbb{F}_p, \mathbb{F}_p(T).$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目目 めんぐ

• Geometry:

- $k = \mathbb{C}$, what is the topological space $Y(\mathbb{C})$?
- How many lines $Y(\mathbb{C})$ contain?

• Arithmetic:

- $k = \mathbb{Q}$, is $Y(\mathbb{Q}) \neq \emptyset$?
- $k = \mathbb{Q}$, is $Y(\mathbb{Q})$ finite?
- Same questions with more exotic arithmetic fields:
 k = Q(T), F_p, F_p(T).

Geometry:

- $k = \mathbb{C}$, what is the topological space $Y(\mathbb{C})$?
- How many lines $Y(\mathbb{C})$ contain?
- Same questions for every algebraically closed field $k = \overline{\mathbb{Q}(T)}, \overline{\mathbb{F}_{p}}, \overline{\mathbb{F}_{p}(T)}.$

(日) (日) (日) (日) (日) (日) (日)

• Arithmetic:

- $k = \mathbb{Q}$, is $Y(\mathbb{Q}) \neq \emptyset$?
- $k = \mathbb{Q}$, is $Y(\mathbb{Q})$ finite?
- Same questions with more exotic arithmetic fields: $k = \mathbb{Q}(T), \mathbb{F}_p, \mathbb{F}_p(T).$

• Geometry:

- *k* = ℂ, what is the topological space *Y*(ℂ)?
- How many lines $Y(\mathbb{C})$ contain?
- Same questions for every algebraically closed field $k = \overline{\mathbb{Q}(T)}, \overline{\mathbb{F}_p}, \overline{\mathbb{F}_p}(T).$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Relation between geometry and arithmetic:

• Arithmetic:

- $k = \mathbb{Q}$, is $Y(\mathbb{Q}) \neq \emptyset$?
- $k = \mathbb{Q}$, is $Y(\mathbb{Q})$ finite?
- Same questions with more exotic arithmetic fields: $k = \mathbb{Q}(T), \mathbb{F}_p, \mathbb{F}_p(T).$

• Geometry:

- *k* = ℂ, what is the topological space *Y*(ℂ)?
- How many lines $Y(\mathbb{C})$ contain?
- Same questions for every algebraically closed field $k = \overline{\mathbb{Q}(T)}, \overline{\mathbb{F}_p}, \overline{\mathbb{F}_p(T)}.$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

- Relation between geometry and arithmetic:
 - $\mathbb{Q} \hookrightarrow \mathbb{C}$: can we relate $Y(\mathbb{Q})$ and $Y(\mathbb{C})$?

• Arithmetic:

- $k = \mathbb{Q}$, is $Y(\mathbb{Q}) \neq \emptyset$?
- $k = \mathbb{Q}$, is $Y(\mathbb{Q})$ finite?
- Same questions with more exotic arithmetic fields: $k = \mathbb{Q}(T), \mathbb{F}_p, \mathbb{F}_p(T).$
- Geometry:
 - *k* = ℂ, what is the topological space Y(ℂ)?
 - How many lines $Y(\mathbb{C})$ contain?
 - Same questions for every algebraically closed field $k = \overline{\mathbb{Q}(T)}, \overline{\mathbb{F}_{p}}, \overline{\mathbb{F}_{p}(T)}.$
- Relation between geometry and arithmetic:
 - $\mathbb{Q} \hookrightarrow \mathbb{C}$: can we relate $Y(\mathbb{Q})$ and $Y(\mathbb{C})$?
 - Theorem (Faltings '83):

 $k = \mathbb{Q}$, Y algebraic curve. If $Y(\mathbb{C})$ is not homeomorphic to a sphere or a torus, then $Y(\mathbb{Q})$ is finite.

• Arithmetic:

- $k = \mathbb{Q}$, is $Y(\mathbb{Q}) \neq \emptyset$?
- $k = \mathbb{Q}$, is $Y(\mathbb{Q})$ finite?
- Same questions with more exotic arithmetic fields: k = O(T) = F(T)
 - $k = \mathbb{Q}(T), \mathbb{F}_{p}, \mathbb{F}_{p}(T).$

Geometry:

- $k = \mathbb{C}$, what is the topological space $Y(\mathbb{C})$?
- How many lines $Y(\mathbb{C})$ contain?
- Same questions for every algebraically closed field $k = \overline{\mathbb{Q}(T)}, \overline{\mathbb{F}_{p}}, \overline{\mathbb{F}_{p}(T)}.$
- Relation between geometry and arithmetic:
 - $\mathbb{Q} \hookrightarrow \mathbb{C}$: can we relate $Y(\mathbb{Q})$ and $Y(\mathbb{C})$?
 - Theorem (Faltings '83):

 $k = \mathbb{Q}$, Y algebraic curve. If $Y(\mathbb{C})$ is not homeomorphic to a sphere or a torus, then $Y(\mathbb{Q})$ is finite.

• $k \hookrightarrow \overline{k}$: can we relate Y(k) and $Y(\overline{k})$?

• Varieties are too complicated, geometry is too complicated, arithmetic is too complicated.

• Varieties are too complicated, geometry is too complicated, arithmetic is too complicated.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

• So one can try to linearise them:

- Varieties are too complicated, geometry is too complicated, arithmetic is too complicated.
- So one can try to linearise them:

 $\{Varieties\} \longrightarrow \{Vector spaces\}$

$$Y \longrightarrow V(Y)$$

- Varieties are too complicated, geometry is too complicated, arithmetic is too complicated.
- So one can try to linearise them:

 $\{Varieties\} \longrightarrow \{Vector spaces\}$

$$Y \longrightarrow V(Y)$$

 $\{Varieties\} \longrightarrow \{Vector spaces + extra structure\}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

$$Y \longrightarrow \underline{V}(Y)$$

- Varieties are too complicated, geometry is too complicated, arithmetic is too complicated.
- So one can try to linearise them:

 $\{Varieties\} \longrightarrow \{Vector spaces\}$

$$Y \longrightarrow V(Y)$$

 $\{Varieties\} \longrightarrow \{Vector \ spaces \ + \ extra \ structure \ \}$

$$Y \longrightarrow \underline{V}(Y)$$

Extra structure

Action of a group, filtration, an automorphism, etc...

NS(Y)

 Divisor Z ⊆ Y:= codimension 1 subvariety (e.g. curve in surface, surface in threefold)

▲□▶▲□▶▲□▶▲□▶ □ のQで

NS(Y)

 Divisor Z ⊆ Y:= codimension 1 subvariety (e.g. curve in surface, surface in threefold)

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

• $NS(Y) \otimes \mathbb{Q} :=$ Néron-Severi group of Y:

NS(Y)

 Divisor Z ⊆ Y:= codimension 1 subvariety (e.g. curve in surface, surface in threefold)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- $NS(Y) \otimes \mathbb{Q} :=$ Néron-Severi group of Y:
 - $Z^1(Y)$ free Q-vector space on divisors of Y

NS(Y)

- Divisor Z ⊆ Y:= codimension 1 subvariety (e.g. curve in surface, surface in threefold)
- $NS(Y) \otimes \mathbb{Q} :=$ Néron-Severi group of Y:
 - Z¹(Y) free Q-vector space on divisors of Y
 - equivalence relation \sim_{num} : $Z \sim_{num} Z'$ if for every curve $C \subseteq Y$

 $|C \cap Z| = |C \cap Z'|;$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

NS(Y)

- Divisor Z ⊆ Y:= codimension 1 subvariety (e.g. curve in surface, surface in threefold)
- $NS(Y) \otimes \mathbb{Q} :=$ Néron-Severi group of Y:
 - Z¹(Y) free Q-vector space on divisors of Y
 - equivalence relation \sim_{num} : $Z \sim_{num} Z'$ if for every curve $C \subseteq Y$

$$|C \cap Z| = |C \cap Z'|;$$

(日) (日) (日) (日) (日) (日) (日)

• $NS(Y) \otimes \mathbb{Q} := Z^1(Y) / \sim$; finite dimensional \mathbb{Q} vector space

Examples

• $NS(\mathbb{P}^n) \otimes \mathbb{Q} \simeq \mathbb{Q}$, generated by an hyperplane;

▲□▶▲圖▶▲臣▶▲臣▶ 臣 のへぐ

Examples

- $NS(\mathbb{P}^n) \otimes \mathbb{Q} \simeq \mathbb{Q}$, generated by an hyperplane;
- $NS(\mathbb{P}^1 \times \mathbb{P}^1) \otimes \mathbb{Q} \simeq \mathbb{Q} \times \mathbb{Q}$, generated by $\mathbb{P}^1 \times \{*\}$ and $\{*\} \times \mathbb{P}^1$

イロト イポト イヨト イヨト ヨー のくぐ

Examples

- $NS(\mathbb{P}^n) \otimes \mathbb{Q} \simeq \mathbb{Q}$, generated by an hyperplane;
- $NS(\mathbb{P}^1 \times \mathbb{P}^1) \otimes \mathbb{Q} \simeq \mathbb{Q} \times \mathbb{Q}$, generated by $\mathbb{P}^1 \times \{*\}$ and $\{*\} \times \mathbb{P}^1$

Base change

•
$$k \hookrightarrow \overline{k}, NS(Y) \otimes \mathbb{Q} \subseteq NS(Y_{\overline{k}}) \otimes \mathbb{Q}.$$

Examples

- $NS(\mathbb{P}^n) \otimes \mathbb{Q} \simeq \mathbb{Q}$, generated by an hyperplane;
- $NS(\mathbb{P}^1 \times \mathbb{P}^1) \otimes \mathbb{Q} \simeq \mathbb{Q} \times \mathbb{Q}$, generated by $\mathbb{P}^1 \times \{*\}$ and $\{*\} \times \mathbb{P}^1$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Base change

- $k \hookrightarrow \overline{k}, NS(Y) \otimes \mathbb{Q} \subseteq NS(Y_{\overline{k}}) \otimes \mathbb{Q}.$
- $NS(\mathbb{P}^n)\otimes\mathbb{Q}\simeq NS(\mathbb{P}^n_{\overline{k}})\otimes\mathbb{Q}\simeq\mathbb{Q}$

Examples

- $NS(\mathbb{P}^n) \otimes \mathbb{Q} \simeq \mathbb{Q}$, generated by an hyperplane;
- $NS(\mathbb{P}^1 \times \mathbb{P}^1) \otimes \mathbb{Q} \simeq \mathbb{Q} \times \mathbb{Q}$, generated by $\mathbb{P}^1 \times \{*\}$ and $\{*\} \times \mathbb{P}^1$

Base change

- $k \hookrightarrow \overline{k}, NS(Y) \otimes \mathbb{Q} \subseteq NS(Y_{\overline{k}}) \otimes \mathbb{Q}.$
- $NS(\mathbb{P}^n)\otimes\mathbb{Q}\simeq NS(\mathbb{P}^n_{\overline{k}})\otimes\mathbb{Q}\simeq\mathbb{Q}$
- $k = \mathbb{Q}$, $Y := x^2 + y^2 + z^2 + w^2 = (x + iy)(x - iy) + (z + iw)(z - iw) = 0$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Examples

- $NS(\mathbb{P}^n) \otimes \mathbb{Q} \simeq \mathbb{Q}$, generated by an hyperplane;
- $NS(\mathbb{P}^1 \times \mathbb{P}^1) \otimes \mathbb{Q} \simeq \mathbb{Q} \times \mathbb{Q}$, generated by $\mathbb{P}^1 \times \{*\}$ and $\{*\} \times \mathbb{P}^1$

Base change

- $k \hookrightarrow \overline{k}, NS(Y) \otimes \mathbb{Q} \subseteq NS(Y_{\overline{k}}) \otimes \mathbb{Q}.$
- $NS(\mathbb{P}^n)\otimes\mathbb{Q}\simeq NS(\mathbb{P}^n_{\overline{k}})\otimes\mathbb{Q}\simeq\mathbb{Q}$

•
$$k = \mathbb{Q}$$
,
 $Y := x^2 + y^2 + z^2 + w^2 = (x + iy)(x - iy) + (z + iw)(z - iw) = 0$
• $Y_{\overline{k}} \simeq \mathbb{P}^1 \times \mathbb{P}^1 \Rightarrow NS(Y_{\overline{k}}) \otimes \mathbb{Q} \simeq \mathbb{Q}^2$;

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Examples

- $NS(\mathbb{P}^n) \otimes \mathbb{Q} \simeq \mathbb{Q}$, generated by an hyperplane;
- $NS(\mathbb{P}^1 \times \mathbb{P}^1) \otimes \mathbb{Q} \simeq \mathbb{Q} \times \mathbb{Q}$, generated by $\mathbb{P}^1 \times \{*\}$ and $\{*\} \times \mathbb{P}^1$

Base change

- $k \hookrightarrow \overline{k}, NS(Y) \otimes \mathbb{Q} \subseteq NS(Y_{\overline{k}}) \otimes \mathbb{Q}.$
- $NS(\mathbb{P}^n)\otimes\mathbb{Q}\simeq NS(\mathbb{P}^n_{\overline{k}})\otimes\mathbb{Q}\simeq\mathbb{Q}$

•
$$k = \mathbb{Q}$$
,
 $Y := x^2 + y^2 + z^2 + w^2 = (x + iy)(x - iy) + (z + iw)(z - iw) = 0$
• $Y_{\overline{k}} \simeq \mathbb{P}^1 \times \mathbb{P}^1 \Rightarrow NS(Y_{\overline{k}}) \otimes \mathbb{Q} \simeq \mathbb{Q}^2$;
• $NS(Y) = \mathbb{Q}$

Families

 $\{Y_x\}_{x \in X}/k$ family of smooth projective varieties \leftrightarrow smooth projective morphism $f: Y \to X$.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Families

 $\{Y_x\}_{x \in X}/k$ family of smooth projective varieties \leftrightarrow smooth projective morphism $f: Y \to X$.

Question

How do $NS(Y_x) \otimes \mathbb{Q}$ and $NS(Y_{\overline{x}}) \otimes \mathbb{Q}$ vary with $x \in X$?

Families

 $\{Y_x\}_{x \in X}/k$ family of smooth projective varieties \leftrightarrow smooth projective morphism $f: Y \to X$.

イロト イポト イヨト イヨト ヨー のくや

Question

How do $NS(Y_x) \otimes \mathbb{Q}$ and $NS(Y_{\overline{x}}) \otimes \mathbb{Q}$ vary with $x \in X$?

Families

 $\{Y_x\}_{x \in X}/k$ family of smooth projective varieties \leftrightarrow smooth projective morphism $f : Y \to X$, $\eta \in X$ generic point.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Question

How do $NS(Y_x) \otimes \mathbb{Q}$ and $NS(Y_{\overline{x}}) \otimes \mathbb{Q}$ vary with $x \in X$?

Families

 $\{Y_x\}_{x \in X}/k$ family of smooth projective varieties \leftrightarrow smooth projective morphism $f : Y \to X$; $\eta \in X$ generic point.

Question

How do $NS(Y_x) \otimes \mathbb{Q}$ and $NS(Y_{\overline{x}}) \otimes \mathbb{Q}$ vary with $x \in X$?

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

• Injective specialization morphism:

$$sp_{\eta,x}: NS(Y_{\overline{\eta}}) \otimes \mathbb{Q} \hookrightarrow NS(Y_{\overline{x}}) \otimes \mathbb{Q};$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

• Injective specialization morphism:

$$sp_{\eta,x}: NS(Y_{\overline{\eta}})\otimes \mathbb{Q} \hookrightarrow NS(Y_{\overline{x}})\otimes \mathbb{Q};$$

• Arithmetic variant:

 $sp_{\eta,x}^{ar}: NS(Y_{\eta})\otimes \mathbb{Q} \hookrightarrow NS(Y_{x})\otimes \mathbb{Q}.$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

• Injective specialization morphism:

$$sp_{\eta,x}: NS(Y_{\overline{\eta}})\otimes \mathbb{Q} \hookrightarrow NS(Y_{\overline{x}})\otimes \mathbb{Q};$$

• Arithmetic variant:

 $sp_{\eta,x}^{ar}: NS(Y_{\eta})\otimes \mathbb{Q} \hookrightarrow NS(Y_{x})\otimes \mathbb{Q}.$

Definition

x NS-generic (resp. arithmetically NS-generic) if $sp_{\eta,x}$ (resp. $sp_{\eta,x}^{ar}$) isomorphism.

Questions

Can we describe the set of (arithmetically) NS-generic closed points?

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 – 釣��

Questions

- Can we describe the set of (arithmetically) NS-generic closed points?
- Is the set of (arithmetically) NS-generic closed points not empty?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Questions

- Can we describe the set of (arithmetically) NS-generic closed points?
- Is the set of (arithmetically) NS-generic closed points not empty?

The answers depend on the arithmetic of k.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Example 1

• $Y \subseteq \mathbb{P}^n$ of dimension ≥ 3 ;

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 – 釣��

Example 1

- $Y \subseteq \mathbb{P}^n$ of dimension ≥ 3 ;
- $\{Y_x\}_{x \in X}$ nice pencil hyperplane sections $Y_x \subseteq Y$;

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 – 釣��

Example 1

- $Y \subseteq \mathbb{P}^n$ of dimension ≥ 3 ;
- $\{Y_x\}_{x \in X}$ nice pencil hyperplane sections $Y_x \subseteq Y$;
- *x* arithmetically NS-generic \Leftrightarrow *NS*(*Y*_{*x*}) $\otimes \mathbb{Q} \simeq$ *NS*(*Y*) $\otimes \mathbb{Q}$.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Example 1

- $Y \subseteq \mathbb{P}^n$ of dimension ≥ 3 ;
- $\{Y_x\}_{x \in X}$ nice pencil hyperplane sections $Y_x \subseteq Y$;
- *x* arithmetically NS-generic \Leftrightarrow *NS*(*Y*_{*x*}) $\otimes \mathbb{Q} \simeq$ *NS*(*Y*) $\otimes \mathbb{Q}$.

Example 1.1

• Veronese's embedding of degree 2

$$\mathbb{P}^3_k \to \mathbb{P}^9_k$$
$$[x: y: z: w] \mapsto [x^2: y^2: z^2: w^2: xy: xz: xw: yz: yw: zw];$$

Example 1

- $Y \subseteq \mathbb{P}^n$ of dimension ≥ 3 ;
- $\{Y_x\}_{x \in X}$ nice pencil hyperplane sections $Y_x \subseteq Y$;
- *x* arithmetically NS-generic \Leftrightarrow *NS*(*Y*_{*x*}) $\otimes \mathbb{Q} \simeq$ *NS*(*Y*) $\otimes \mathbb{Q}$.

Example 1.1

• Veronese's embedding of degree 2

$$\mathbb{P}^3_k \to \mathbb{P}^9_k$$
$$[x:y:z:w] \mapsto [x^2:y^2:z^2:w^2:xy:xz:xw:yz:yw:zw];$$

• Hyperplane section $Y_x \leftrightarrow$ Quadric $Q_x \subseteq \mathbb{P}^3$;

Example 1

- $Y \subseteq \mathbb{P}^n$ of dimension ≥ 3 ;
- $\{Y_x\}_{x \in X}$ nice pencil hyperplane sections $Y_x \subseteq Y$;
- *x* arithmetically NS-generic \Leftrightarrow *NS*(*Y*_{*x*}) $\otimes \mathbb{Q} \simeq$ *NS*(*Y*) $\otimes \mathbb{Q}$.

Example 1.1

• Veronese's embedding of degree 2

$$\mathbb{P}^3_k \to \mathbb{P}^9_k$$
$$[x:y:z:w] \mapsto [x^2:y^2:z^2:w^2:xy:xz:xw:yz:yw:zw];$$

Hyperplane section Y_x ↔ Quadric Q_x ⊆ P³; k = k ⇒ Q_x ≃ P¹ × P¹,

 $NS(Q_x)\otimes \mathbb{Q}\simeq \mathbb{Q}\times \mathbb{Q}, \quad \text{while} \quad NS(\mathbb{P}^3)\otimes \mathbb{Q}\simeq \mathbb{Q}.$

Theorem 1 (A.)

p > 0, *k* infinite finitely generated (i.e. $k = \mathbb{F}_{p}(T_{1}, ..., T_{n})) \Rightarrow$

・ロト・西ト・田・・田・ ひゃぐ

Theorem 1 (A.)

- ho > 0, k infinite finitely generated (i.e. $k = \mathbb{F}_{
 ho}(T_1, ..., T_n)) \Rightarrow$
 - Infinitely many arithmetically NS-generic points of bounded degree;

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Theorem 1 (A.)

p > 0, k infinite finitely generated (i.e. $k = \mathbb{F}_{p}(T_{1}, ..., T_{n})) \Rightarrow$

Infinitely many arithmetically NS-generic points of bounded degree;

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

2 X curve \Rightarrow all but finitely many $x \in X(k)$ NS-generic.

Theorem 1 (A.)

- p > 0, k infinite finitely generated (i.e. $k = \mathbb{F}_{p}(T_{1}, ..., T_{n})) \Rightarrow$
 - Infinitely many arithmetically NS-generic points of bounded degree;

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

2 X curve \Rightarrow all but finitely many $x \in X(k)$ NS-generic.

Remark (p=0)

- If *p* = 0:
 - is due to André;
 - Is due to Cadoret-Tamagawa.

Problem

 $NS(Y_x) \otimes \mathbb{Q}$ difficult to control in general, too geometric.

Problem

 $NS(Y_x) \otimes \mathbb{Q}$ difficult to control in general, too geometric.

Étale cohomology

$$Y \longrightarrow H^2(Y_{\overline{X}}, \mathbb{Q}_{\ell}(1))$$

・ロト・西ト・西ト・日下 ひゃつ

Problem

 $NS(Y_x) \otimes \mathbb{Q}$ difficult to control in general, too geometric.

Étale cohomology

$$Y \longrightarrow H^2(Y_{\overline{X}}, \mathbb{Q}_{\ell}(1))$$

• for $\ell \neq p$ prime $H^2(Y_{\overline{x}}, \mathbb{Q}_{\ell}(1))$ finite dimensional \mathbb{Q}_{ℓ} -vector space;

(日) (日) (日) (日) (日) (日) (日)

Problem

 $NS(Y_x) \otimes \mathbb{Q}$ difficult to control in general, too geometric.

Étale cohomology

$$Y \longrightarrow H^2(Y_{\overline{X}}, \mathbb{Q}_{\ell}(1))$$

for ℓ ≠ p prime H²(Y_{x̄}, Qℓ(1)) finite dimensional Qℓ-vector space;
π₁(k(x)) := Gal(k(x), k(x)) acts (continuously) on H²(Y_{x̄}, Qℓ(1));

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Problem

 $NS(Y_x) \otimes \mathbb{Q}$ difficult to control in general, too geometric.

Étale cohomology

$$Y \longrightarrow H^2(Y_{\overline{x}}, \mathbb{Q}_{\ell}(1))$$

for ℓ ≠ p prime H²(Y_x, Q_ℓ(1)) finite dimensional Q_ℓ-vector space;
π₁(k(x)) := Gal(k(x), k(x)) acts (continuously) on H²(Y_x, Q_ℓ(1));
cycle class map c_{Y_x} : NS(Y_x) ⊗ Q_ℓ → H²(Y_x, Q_ℓ(1)).

Tate conjecture

Cycles class map

$$c_Y: NS(Y_X) \otimes \mathbb{Q}_\ell \hookrightarrow H^2(Y_{\overline{X}}, \mathbb{Q}_\ell(1))$$

contained in the fixed points

 $H^{2}(Y_{\overline{x}}, \mathbb{Q}_{\ell}(1))^{\pi_{1}(k(x))};$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Tate conjecture

Cycles class map

$$c_Y: NS(Y_X) \otimes \mathbb{Q}_\ell \hookrightarrow H^2(Y_{\overline{X}}, \mathbb{Q}_\ell(1))$$

contained in the fixed points

 $H^{2}(Y_{\overline{x}}, \mathbb{Q}_{\ell}(1))^{\pi_{1}(k(x))};$

Conjecture (Tate)

k finitely generated, $\ell \neq p$, then

 $c_Y: NS(Y_x) \otimes \mathbb{Q}_\ell \xrightarrow{\simeq} H^2(Y_{\overline{X}}, \mathbb{Q}_\ell(1))^{\pi_1(k(x))}.$

・ロト・西ト・ヨト ・ヨー シタの

• $\{H^2(Y_{\overline{x}}, \mathbb{Q}_{\ell}(1))\}_{x \in X} \ell$ -adic local system,

- $\{H^2(Y_{\overline{x}}, \mathbb{Q}_{\ell}(1))\}_{x \in X} \ell$ -adic local system,
- e.g. representation of étale fundamental group $\pi_1(X)$.

- $\{H^2(Y_{\overline{x}}, \mathbb{Q}_{\ell}(1))\}_{x \in X} \ell$ -adic local system,
- e.g. representation of étale fundamental group $\pi_1(X)$.

$$\pi_1(k(\eta)) \xrightarrow{\rho_{\ell,\eta}} GL(H^2(Y_{\overline{\eta}}, \mathbb{Q}_{\ell}(1)))$$

$$\pi_1(k(x)) \xrightarrow{\rho_{\ell,x}} GL(H^2(Y_{\overline{x}}, \mathbb{Q}_{\ell}(1)))$$

- $\{H^2(Y_{\overline{X}}, \mathbb{Q}_{\ell}(1))\}_{x \in X} \ell$ -adic local system,
- e.g. representation of étale fundamental group $\pi_1(X)$.

$$\pi_{1}(k(\eta)) \xrightarrow{\rho_{\ell,\eta}} GL(H^{2}(Y_{\overline{\eta}}, \mathbb{Q}_{\ell}(1)))$$

$$\downarrow$$

$$\pi_{1}(X)$$

$$\uparrow$$

$$\pi_{1}(k(x)) \xrightarrow{\rho_{\ell,x}} GL(H^{2}(Y_{\overline{x}}, \mathbb{Q}_{\ell}(1)))$$

- $\{H^2(Y_{\overline{X}}, \mathbb{Q}_{\ell}(1))\}_{x \in X} \ell$ -adic local system,
- e.g. representation of étale fundamental group $\pi_1(X)$.

(日) (日) (日) (日) (日) (日) (日)

- $\{H^2(Y_{\overline{X}}, \mathbb{Q}_{\ell}(1))\}_{x \in X} \ell$ -adic local system,
- e.g. representation of étale fundamental group $\pi_1(X)$.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

- $\{H^2(Y_{\overline{X}}, \mathbb{Q}_{\ell}(1))\}_{x \in X} \ell$ -adic local system,
- e.g. representation of étale fundamental group $\pi_1(X)$.

Inclusion of *l*-adic Lie groups

$$\rho_\ell(\pi_1(k(x))) =: \Pi_{\ell,x} \subseteq \Pi_\ell := \rho_\ell(\pi_1(X))$$

x G-generic (resp. strictly G-generic) if $[\Pi_{\ell}:\Pi_{\ell,x}]<+\infty$ (resp. $\Pi_{\ell,x}=\Pi_{\ell}$)

x G-generic (resp. strictly G-generic) if $[\Pi_{\ell} : \Pi_{\ell,x}] < +\infty$ (resp. $\Pi_{\ell,x} = \Pi_{\ell}$)

Proposition (Serre)

k infinite finitely generated $\Rightarrow \exists$ infinitely many strictly G-generic points of bounded degree.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目目 めんぐ

x G-generic (resp. strictly G-generic) if $[\Pi_{\ell} : \Pi_{\ell,x}] < +\infty$ (resp. $\Pi_{\ell,x} = \Pi_{\ell}$)

Proposition (Serre)

k infinite finitely generated $\Rightarrow \exists$ infinitely many strictly G-generic points of bounded degree.

Theorem 2 (A.)

p > 0, k finitely generated, X curve \Rightarrow all but finitely many $x \in X(k)$ G-generic.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

x G-generic (resp. strictly G-generic) if $[\Pi_{\ell} : \Pi_{\ell,x}] < +\infty$ (resp. $\Pi_{\ell,x} = \Pi_{\ell}$)

Proposition (Serre)

k infinite finitely generated $\Rightarrow \exists$ infinitely many strictly G-generic points of bounded degree.

Theorem 2 (A.)

p > 0, *k* finitely generated, *X* curve \Rightarrow all but finitely many $x \in X(k)$ G-generic.

(日) (日) (日) (日) (日) (日) (日)

Remark (p=0)

If p = 0 Theorem 2 is due to Cadoret-Tamagawa.

Tate conjecture predicts:

(Strictly) G-generic points are (arithmetically) NS-generic.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Tate conjecture predicts:

(Strictly) G-generic points are (arithmetically) NS-generic.

Theorem 3 (A.)

p > 0, k finitely generated \Rightarrow (strictly) G-generic are (arithmetically) NS-generic.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Tate conjecture predicts:

(Strictly) G-generic points are (arithmetically) NS-generic.

Theorem 3 (A.)

p > 0, k finitely generated \Rightarrow (strictly) G-generic are (arithmetically) NS-generic.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Remark (p=0)

If p = 0, Theorem 3 due to André.

Tate conjecture predicts:

(Strictly) G-generic points are (arithmetically) NS-generic.

Theorem 3 (A.)

p > 0, k finitely generated \Rightarrow (strictly) G-generic are (arithmetically) NS-generic.

Remark (p=0)

If p = 0, Theorem 3 due to André.

Conclusion

Existence and abundance of G-generic points (Theorem 2) + Theorem $3 \Rightarrow$ existence and abundance of NS-generic points (Theorem 1).

THANK YOU FOR THE ATTENTION!

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト ・ シ へ つ ヘ