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k field of characteristic p ≥ 0 and Y ⊆ Pn smooth projective
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We study:

Arithmetic:

k = Q, is Y (Q) 6= ∅?
k = Q, is Y (Q) finite?
Same questions with more exotic arithmetic fields:
k = Q(T ),Fp,Fp(T ).

Geometry:

k = C, what is the topological space Y (C)?
How many lines Y (C) contain?
Same questions for every algebraically closed field
k = Q(T ),Fp,Fp(T ).

Relation between geometry and arithmetic:

Q ↪→ C: can we relate Y (Q) and Y (C)?
Theorem (Faltings ’83):
k = Q, Y algebraic curve. If Y (C) is not homeomorphic to a sphere

or a torus, then Y (Q) is finite.
k ↪→ k : can we relate Y (k) and Y (k)?
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Linearisation

Varieties are too complicated, geometry is too complicated,
arithmetic is too complicated.

So one can try to linearise them:

{Varieties} {Vector spaces}

Y V (Y )

{Varieties} {Vector spaces + extra structure }

Y V (Y )

Extra structure
Action of a group, filtration, an automorphism, etc...
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Néron Severi group

NS(Y)
Divisor Z ⊆ Y := codimension 1 subvariety (e.g. curve in surface,
surface in threefold)

NS(Y )⊗Q := Néron-Severi group of Y :

Z 1(Y ) free Q-vector space on divisors of Y
equivalence relation ∼num: Z ∼num Z ′ if for every curve C ⊆ Y

|C ∩ Z | = |C ∩ Z ′|;

NS(Y )⊗Q := Z 1(Y )/ ∼; finite dimensional Q vector space
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Néron Severi group

Examples
NS(Pn)⊗Q ' Q, generated by an hyperplane;

NS(P1 × P1)⊗Q ' Q×Q, generated by P1 × {∗} and {∗} × P1

Base change

k ↪→ k , NS(Y )⊗Q ⊆ NS(Yk )⊗Q.
NS(Pn)⊗Q ' NS(Pn

k
)⊗Q ' Q

k = Q,
Y := x2 + y2 + z2 + w2 = (x + iy)(x − iy) + (z + iw)(z − iw) = 0

Yk ' P1 × P1 ⇒ NS(Yk )⊗Q ' Q2;
NS(Y ) = Q.
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Néron Severi group

Examples
NS(Pn)⊗Q ' Q, generated by an hyperplane;
NS(P1 × P1)⊗Q ' Q×Q, generated by P1 × {∗} and {∗} × P1

Base change

k ↪→ k , NS(Y )⊗Q ⊆ NS(Yk )⊗Q.
NS(Pn)⊗Q ' NS(Pn

k
)⊗Q ' Q

k = Q,
Y := x2 + y2 + z2 + w2 = (x + iy)(x − iy) + (z + iw)(z − iw) = 0

Yk ' P1 × P1 ⇒ NS(Yk )⊗Q ' Q2;
NS(Y ) = Q.
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Families

{Yx}x∈X/k family of smooth projective varieties↔ smooth projective
morphism f : Y → X .

Question
How do NS(Yx )⊗Q and NS(Yx )⊗Q vary with x ∈ X?

Yx Yx Y Yη Yη

k(x) k(x) X k(η) k(η)

� � f

x
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NS-generic points

Yx Y Yη

k(x) X k(η)

� f �

x η

Injective specialization morphism:

spη,x : NS(Yη)⊗Q ↪→ NS(Yx )⊗Q;

Arithmetic variant:

spar
η,x : NS(Yη)⊗Q ↪→ NS(Yx )⊗Q.

Definition
x NS-generic (resp. arithmetically NS-generic) if spη,x (resp. spar

η,x )
isomorphism.
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Can we describe the set of (arithmetically) NS-generic closed
points?

Is the set of (arithmetically) NS-generic closed points not empty?

The answers depend on the arithmetic of k .
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Example 1
Y ⊆ Pn of dimension ≥ 3;

{Yx}x∈X nice pencil hyperplane sections Yx ⊆ Y ;
x arithmetically NS-generic⇔ NS(Yx )⊗Q ' NS(Y )⊗Q.

Example 1.1

Veronese’s embedding of degree 2

P3
k → P9

k

[x : y : z : w ] 7→ [x2 : y2 : z2 : w2 : xy : xz : xw : yz : yw : zw ];

Hyperplane section Yx ↔ Quadric Qx ⊆ P3;
k = k ⇒ Qx ' P1 × P1,

NS(Qx )⊗Q ' Q×Q, while NS(P3)⊗Q ' Q.
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NS-generic points

Theorem 1 (A.)
p > 0, k infinite finitely generated (i.e. k = Fp(T1, ...,Tn))⇒

1 ∃ infinitely many arithmetically NS-generic points of bounded
degree;

2 X curve⇒ all but finitely many x ∈ X (k) NS-generic.

Remark (p=0)
If p = 0:

1 is due to André;
2 is due to Cadoret-Tamagawa.
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NS-generic points

Problem
NS(Yx )⊗Q difficult to control in general, too geometric.

Étale cohomology

Y H2(Yx ,Q`(1))

for ` 6= p prime H2(Yx ,Q`(1)) finite dimensional Q`-vector space;
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Inclusion of `-adic Lie groups

ρ`(π1(k(x))) =: Π`,x ⊆ Π` := ρ`(π1(X ))
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Definition
x G-generic (resp. strictly G-generic) if [Π` : Π`,x ] < +∞ (resp.
Π`,x = Π`)

Proposition (Serre)
k infinite finitely generated⇒ ∃ infinitely many strictly G-generic points
of bounded degree.

Theorem 2 (A.)
p > 0, k finitely generated, X curve⇒ all but finitely many x ∈ X (k)
G-generic.

Remark (p=0)
If p = 0 Theorem 2 is due to Cadoret-Tamagawa.
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G-generic vs NS-generic

Tate conjecture predicts:
(Strictly) G-generic points are (arithmetically) NS-generic.

Theorem 3 (A.)
p > 0, k finitely generated⇒ (strictly) G-generic are (arithmetically)
NS-generic.

Remark (p=0)
If p = 0, Theorem 3 due to André.

Conclusion
Existence and abundance of G-generic points (Theorem 2) + Theorem
3⇒ existence and abundance of NS-generic points (Theorem 1).
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