Specialization of representations of the étale fundamental group and applications

Emiliano Ambrosi

École polytechnique

Where Geometry meets Number Theory - IMS, Sweden 17 July 2017

• k infinite finitely generated field, $char(k) = p \ge 0$,

- k infinite finitely generated field, $char(k) = p \ge 0$,
- $\ell \neq p$ a prime

- k infinite finitely generated field, $char(k) = p \ge 0$,
- $\ell \neq p$ a prime
- ► S smooth geometrically connected k-variety

- k infinite finitely generated field, $char(k) = p \ge 0$,
- $\ell \neq p$ a prime
- S smooth geometrically connected k-variety
- |S| set of closed points of S, η generic point

- k infinite finitely generated field, $char(k) = p \ge 0$,
- $\ell \neq p$ a prime
- S smooth geometrically connected k-variety
- |S| set of closed points of S, η generic point
- ▶ For $s \in S$, k(s) residue field, \overline{s} associated geometric point

- k infinite finitely generated field, $char(k) = p \ge 0$,
- $\ell \neq p$ a prime
- S smooth geometrically connected k-variety
- |S| set of closed points of S, η generic point
- ▶ For $s \in S$, k(s) residue field, \overline{s} associated geometric point
- $S^{\leq d} := \{s \in |S| \text{ with } [k(s):k] \leq d\}$

- k infinite finitely generated field, $char(k) = p \ge 0$,
- $\ell \neq p$ a prime
- S smooth geometrically connected k-variety
- |S| set of closed points of S, η generic point
- ▶ For $s \in S$, k(s) residue field, \overline{s} associated geometric point
- $S^{\leq d} := \{s \in |S| \text{ with } [k(s):k] \leq d\}$
- $f: X \to S$ smooth proper morphism

- ▶ k infinite finitely generated field, $char(k) = p \ge 0$,
- $\ell \neq p$ a prime
- S smooth geometrically connected k-variety
- |S| set of closed points of S, η generic point
- ▶ For $s \in S$, k(s) residue field, \overline{s} associated geometric point
- $S^{\leq d} := \{s \in |S| \text{ with } [k(s):k] \leq d\}$
- $f: X \rightarrow S$ smooth proper morphism
- For $s \in S$, X_s and $X_{\overline{s}}$ corresponding fibers

- ▶ k infinite finitely generated field, $char(k) = p \ge 0$,
- $\ell \neq p$ a prime
- S smooth geometrically connected k-variety
- |S| set of closed points of S, η generic point
- ▶ For $s \in S$, k(s) residue field, \overline{s} associated geometric point
- $S^{\leq d} := \{s \in |S| \text{ with } [k(s):k] \leq d\}$
- $f: X \rightarrow S$ smooth proper morphism
- For $s \in S$, X_s and $X_{\overline{s}}$ corresponding fibers

- k infinite finitely generated field, $char(k) = p \ge 0$,
- $\ell \neq p$ a prime
- S smooth geometrically connected k-variety
- |S| set of closed points of S, η generic point
- ▶ For $s \in S$, k(s) residue field, \overline{s} associated geometric point
- $S^{\leq d} := \{s \in |S| \text{ with } [k(s):k] \leq d\}$
- $f: X \rightarrow S$ smooth proper morphism
- For $s \in S$, X_s and $X_{\overline{s}}$ corresponding fibers

Problem:

Study arithmetic and geometric properties of X_s and $X_{\overline{s}}$ while s is varying in S

Smooth and proper base change

Smooth and proper base change

Write:

$$ho_\ell(\pi_1(\mathcal{S})) := \Pi_\ell \qquad
ho_\ell(\pi_1(k(s))) := \Pi_{\ell,s}$$

Smooth and proper base change

Write:

$$ho_\ell(\pi_1(S)) := \Pi_\ell \qquad
ho_\ell(\pi_1(k(s))) := \Pi_{\ell,s}$$

Consider the inclusion

$$\Pi_{\ell,\boldsymbol{s}}\subseteq \Pi_{\ell}$$

Hilbert's irreducibility theorem (+ Frattini argument)

Proposition (J.P. Serre, T. Terasoma, \sim '85) There exist infinitely many $s \in |S|$ such that $\Pi_{\ell,s} = \Pi_{\ell}$ Hilbert's irreducibility theorem (+ Frattini argument)

Proposition (J.P. Serre, T. Terasoma, \sim '85) There exist infinitely many $s \in |S|$ such that $\Pi_{\ell,s} = \Pi_{\ell}$

Application

 $\rho_{\ell,s}$ semisimple for all $s \in |S| \Rightarrow \rho_{\ell}$ semisimple.

Uniform open image theorem

Consider the statement:

 $(UOI, X \to S, \leq d)$: $\Pi_{\ell,s}$ is open in Π_{ℓ} for all but finitely many $s \in S^{\leq d}$ and for all such s,

 $[\Pi_{\ell}:\Pi_{\ell,s}] \leq C := C(\ell,d,X \to S)$

Uniform open image theorem

Consider the statement:

 $(UOI, X \rightarrow S, \leq d)$: $\Pi_{\ell,s}$ is open in Π_{ℓ} for all but finitely many $s \in S^{\leq d}$ and for all such s,

$$[\Pi_{\ell}:\Pi_{\ell,s}] \leq C := C(\ell,d,X \to S)$$

Theorem

 $(UOI, X \rightarrow S, \leq d)$ holds if S is a curve and for

▶ (A.Cadoret, A. Tamagawa '13) p = 0 and d arbitrary

Uniform open image theorem

Consider the statement:

 $(UOI, X \rightarrow S, \leq d)$: $\Pi_{\ell,s}$ is open in Π_{ℓ} for all but finitely many $s \in S^{\leq d}$ and for all such s,

$$[\Pi_{\ell}:\Pi_{\ell,s}] \leq C := C(\ell,d,X \to S)$$

Theorem

 $(UOI, X \rightarrow S, \leq d)$ holds if S is a curve and for

- ▶ (A.Cadoret, A. Tamagawa '13) p = 0 and d arbitrary
- ► (E.A. '16) p > 0 and d = 1

S curve and p = 0 (resp p > 0) For every d > 0 (resp d = 1) exists $C := C(\ell, d, X \rightarrow S)$ that

S curve and p = 0 (resp p > 0) For every d > 0 (resp d = 1) exists $C := C(\ell, d, X \rightarrow S)$ that

▶ (A.Cadoret, A. Tamagawa '13-E.A.'17) If $X \rightarrow S$ abelian scheme then

 $|X_s[\ell^\infty](k(s))| \leq C$

for all $s \in S^{\leq d}$.

S curve and p = 0 (resp p > 0) For every d > 0 (resp d = 1) exists $C := C(\ell, d, X \rightarrow S)$ that

▶ (A.Cadoret, A. Tamagawa '13-E.A.'17) If $X \rightarrow S$ abelian scheme then

$$|X_s[\ell^\infty](k(s))| \leq C$$

for all $s \in S^{\leq d}$.

(A.Cadoret, F. Charles '16-E.A.'17) If X_s satisfies Tate conjecture for all s ∈ S then

$$|Br(X_{\overline{s}})[\ell^{\infty}]^{\pi_1(k(s))}| \leq C$$

for all $s \in S^{\leq d}$

Specilization of the geometric Néron-Severi groups

• $NS(X_{\overline{s}})$ Néron-Severi group of $X_{\overline{s}}$

Specilization of the geometric Néron-Severi groups

- ► NS(X_s) Néron-Severi group of X_s
- Cycle class map:

 $ch_{X_{\overline{s}}}: NS(X_{\overline{s}})\otimes \mathbb{Q} \to H^2(X_{\overline{s}}, \mathbb{Q}_{\ell}(1))$

Specilization of the geometric Néron-Severi groups

- $NS(X_{\overline{s}})$ Néron-Severi group of $X_{\overline{s}}$
- Cycle class map:

$$ch_{X_{\overline{s}}}: NS(X_{\overline{s}})\otimes \mathbb{Q} \to H^2(X_{\overline{s}}, \mathbb{Q}_{\ell}(1))$$

• For $s \in |S|$, injective map:

$$sp_{\eta,s}: NS(X_{\overline{\eta}})\otimes \mathbb{Q} \hookrightarrow NS(X_{\overline{s}})\otimes \mathbb{Q}$$

compatible with

$$H^2(X_{\overline{\eta}}, \mathbb{Q}_\ell(1)) \simeq H^2(X_{\overline{s}}, \mathbb{Q}_\ell(1))$$

and with $ch_{X_{\overline{s}}}$, $ch_{X_{\overline{\eta}}}$

Consider the statement:

 $(NS, X \rightarrow S)$: $\Pi_{\ell,s}$ open in $\Pi_{\ell} \Rightarrow sp_{\eta,s}$ isomorphism.

Consider the statement:

 $(NS, X \rightarrow S)$: $\Pi_{\ell,s}$ open in $\Pi_{\ell} \Rightarrow sp_{\eta,s}$ isomorphism.

Theorem $(NS, X \rightarrow S)$ is true if: \blacktriangleright (Y. André '96, A. Cadoret '12) p = 0 Consider the statement:

 $(NS, X \rightarrow S)$: $\Pi_{\ell,s}$ open in $\Pi_{\ell} \Rightarrow sp_{\eta,s}$ isomorphism.

Theorem $(NS, X \rightarrow S)$ is true if: (Y. André '96, A. Cadoret '12) p = 0 $(E.A.'17) p > 0 and X \rightarrow S is projective$

p = 0 (resp p > 0 and $X \rightarrow S$ projective)

- p = 0 (resp p > 0 and $X \rightarrow S$ projective)
 - If X_s satisfies Tate conjecture for s ∈ |S| then X_η satisfies Tate conjecture.

p = 0 (resp p > 0 and $X \rightarrow S$ projective)

- If X_s satisfies Tate conjecture for s ∈ |S| then X_η satisfies Tate conjecture.
- (D. Maulik, B.Poonen '12) If X_s projective for all s ∈ |S| then there is an open subset U ⊆ S with X_U → U projective.

p = 0 (resp p > 0 and $X \rightarrow S$ projective)

- If X_s satisfies Tate conjecture for s ∈ |S| then X_η satisfies Tate conjecture.
- (D. Maulik, B.Poonen '12) If X_s projective for all s ∈ |S| then there is an open subset U ⊆ S with X_U → U projective.
- (A.Cadoret, F. Charles '16-E.A.'17) If S curve and Π_ℓ^{zar} connected then for every d > 0 (resp d = 1)
 ∃C := C(ℓ, d, X → S) with

$$[Br(X_{\overline{s}})[\ell^{\infty}]^{\pi_1(s)}:Br(X_{\overline{\eta}})[\ell^{\infty}]^{\pi_1(\eta)}] \leq C$$

for all but finitely many $s \in S^{\leq d}$

▶ Variational Hodge conjecture (i.e. Lefschetz theorem on (1,1)-classes + Théorie de Hodge II (P.Deligne '71)) ⇒ specialization of $NS(X_{\overline{s}})$ in Betti cohomology controlled via the action of topological fundamental group of *S*.

- ▶ Variational Hodge conjecture (i.e. Lefschetz theorem on (1,1)-classes + Théorie de Hodge II (P.Deligne '71)) ⇒ specialization of $NS(X_{\overline{s}})$ in Betti cohomology controlled via the action of topological fundamental group of *S*.
- Comparison between singular and étale cohomology ⇒ action studied via the relationship between Π_ℓ and Π_{ℓ,s}

Find replacement for

1. Variational Hodge conjecture

Find replacement for

- 1. Variational Hodge conjecture
- 2. Comparison between Betti and ℓ -adic cohomology.

Find replacement for

- 1. Variational Hodge conjecture
- 2. Comparison between Betti and ℓ -adic cohomology.
- 1 is replaced with the variational Tate conjecture in crystalline cohomology (M.Morrow ('14))

- Find replacement for
 - 1. Variational Hodge conjecture
 - 2. Comparison between Betti and ℓ -adic cohomology.
- 1 is replaced with the variational Tate conjecture in crystalline cohomology (M.Morrow ('14))
- 2 is replaced with the comparison of monodromy groups via the Tannaka formalism. More precisely:

$$\overline{\Pi_{\ell}}^{zar} := G_{\ell} \qquad \overline{\Pi_{\ell,s}}^{zar} := G_{\ell,s}$$

$$\overline{\Pi_{\ell}}^{zar} := G_{\ell} \qquad \overline{\Pi_{\ell,s}}^{zar} := G_{\ell,s}$$

*Rep*_{Qℓ}(*G*ℓ) ≃< ρℓ >, with < ρℓ > smallest Tannaka category generated by ρℓ

$$\overline{\Pi_{\ell}}^{zar} := G_{\ell} \qquad \overline{\Pi_{\ell,s}}^{zar} := G_{\ell,s}$$

- *Rep*_{Qℓ}(*Gℓ*) ≃< *ρℓ* >, with < *ρℓ* > smallest Tannaka category generated by *ρℓ*
- $\Pi_{\ell,s}$ open in $\Pi_{\ell} \Leftrightarrow G^0_{\ell,s} = G^0_{\ell}$

$$\overline{\Pi_{\ell}}^{zar} := G_{\ell} \qquad \overline{\Pi_{\ell,s}}^{zar} := G_{\ell,s}$$

- *Rep*_{Qℓ}(*Gℓ*) ≃< *ρℓ* >, with < *ρℓ* > smallest Tannaka category generated by *ρℓ*
- $\Pi_{\ell,s}$ open in $\Pi_{\ell} \Leftrightarrow G^0_{\ell,s} = G^0_{\ell}$
- ► Thanks to C.Lazda ('16), we have an overconvergent F-isocrystal $R^2 f_* \mathcal{O}^{\dagger}_{X/K}$.

$$\overline{\Pi_{\ell}}^{zar} := G_{\ell} \qquad \overline{\Pi_{\ell,s}}^{zar} := G_{\ell,s}$$

- *Rep*_{Qℓ}(*Gℓ*) ≃< *ρℓ* >, with < *ρℓ* > smallest Tannaka category generated by *ρℓ*
- $\Pi_{\ell,s}$ open in $\Pi_{\ell} \Leftrightarrow G^0_{\ell,s} = G^0_{\ell}$
- ► Thanks to C.Lazda ('16), we have an overconvergent F-isocrystal $R^2 f_* \mathcal{O}^{\dagger}_{X/K}$.
- ► Consider $\langle R^2 f_* \mathcal{O}_{X/K}^{\dagger} \rangle$. Tannaka formalism \Rightarrow there are algebraic groups G_p and $G_{p,s}$.

$$\overline{\Pi_{\ell}}^{zar} := G_{\ell} \qquad \overline{\Pi_{\ell,s}}^{zar} := G_{\ell,s}$$

- *Rep*_{Qℓ}(*Gℓ*) ≃< *ρℓ* >, with < *ρℓ* > smallest Tannaka category generated by *ρℓ*
- $\Pi_{\ell,s}$ open in $\Pi_{\ell} \Leftrightarrow G^0_{\ell,s} = G^0_{\ell}$
- ► Thanks to C.Lazda ('16), we have an overconvergent F-isocrystal $R^2 f_* \mathcal{O}^{\dagger}_{X/K}$.
- ► Consider $\langle R^2 f_* \mathcal{O}_{X/K}^{\dagger} \rangle$. Tannaka formalism \Rightarrow there are algebraic groups G_p and $G_{p,s}$.
- Via independence techniques

$$G_{\ell}^{0} = G_{\ell,s}^{0} \Leftrightarrow G_{p}^{0} = G_{p,s}^{0}$$