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Problem:
Study arithmetic and geometric properties of X5 and Xz while s is
varying in S
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» Smooth and proper base change

Pe,n

k(n)) — GL(H'(Xy),Qu(j))

i/
T\

GL(H'(Xs), Qe(4))
» Write:

pe(m1(S)) =Ny pe(mi(k(s))) =Ny
» Consider the inclusion

Mes €Ty
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Proposition (J.P. Serre, T. Terasoma, ~ '85)
There exist infinitely many s € |S| such that M, s =T,

Application
pe,s semisimple for all s € |S| = pg semisimple.
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Consider the statement:

(UOI, X — S§,< d): My is open in Iy for all but finitely many
s € S=9 and for all such s,

[rlg : I'Ig}s] < C = C(@, d,X — 5)

Theorem
(UOI, X — S,< d) holds if S is a curve and for

» (A.Cadoret, A. Tamagawa '13) p =0 and d arbitrary
» (EA.'16) p>0andd =1
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S curve and p =0 (resp p > 0)
For every d > 0 (resp d = 1) exists C := C({,d, X — S) that

» (A.Cadoret, A. Tamagawa '13-E.A.'17) If X — S abelian
scheme then
[X[Z](k(s)) < €

for all s € §=9.

» (A.Cadoret, F. Charles '16-E.A."17) If X satisfies Tate
conjecture for all s € S then

[Br(Xs) (]| < €

for all s € §=4
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» NS(Xs) Néron-Severi group of Xs

» Cycle class map:
chx, : NS(Xs) ® Q — H?(Xs, Qe(1))
» For s € |S|, injective map:
spn,s - NS(Xq) @ Q — NS(Xs) @ Q
compatible with
H2 (X, Qu(1)) ~ H(Xs, Qu(1))

and with chx_, chxﬁ
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Theorem
(NS, X — S) is true if:
» (Y. André '96, A. Cadoret '12) p =0
» (EA.'17) p >0 and X — S is projective
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Applications

p=0 (resp p >0 and X — S projective)
» If X satisfies Tate conjecture for s € |S| then X;; satisfies
Tate conjecture.
» (D. Maulik, B.Poonen '12) If X, projective for all s € |S| then
there is an open subset U C S with Xy — U projective.

» (A.Cadoret, F. Charles '16-E.A.'17) If S curve and 1,
connected then for every d > 0 (resp d = 1)
3C := C(¢,d, X — S) with

(BRI BrOG)E] ) < €

for all but finitely many s € S=¢
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(1,1)-classes + Théorie de Hodge Il (P.Deligne '71) ) =
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» Comparison between singular and étale cohomology = action
studied via the relationship between 1, and I, ¢
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Main ideas in the proof when p > 0

» Find replacement for
1. Variational Hodge conjecture
2. Comparison between Betti and /-adic cohomology.
» 1 is replaced with the variational Tate conjecture in crystalline
cohomology (M.Morrow ('14))
» 2 is replaced with the comparison of monodromy groups via
the Tannaka formalism. More precisely:
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Instead of I, and [y s consider
— Zar — Zar
rlg = Gg rlg,S = Gg’s

Repg,(Gy) ~< pe >, with < p; > smallest Tannaka category
generated by py

Ms open in I, < th,s = Gg

Thanks to C.Lazda ('16), we have an overconvergent
F-isocrystal sz*(’)L/K.

Consider < R2f*OI</K >. Tannaka formalism = there are

algebraic groups Gp and Gp s.

Via independence techniques
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