Specialization of representations of the étale fundamental group and applications

Emiliano Ambrosi
École polytechnique

Where Geometry meets Number Theory - IMS, Sweden
17 July 2017

Introduction and notation

- k infinite finitely generated field, $\operatorname{char}(k)=p \geq 0$,

Introduction and notation

- k infinite finitely generated field, $\operatorname{char}(k)=p \geq 0$,
- $\ell \neq p$ a prime

Introduction and notation

- k infinite finitely generated field, $\operatorname{char}(k)=p \geq 0$,
- $\ell \neq p$ a prime
- S smooth geometrically connected k-variety

Introduction and notation

- k infinite finitely generated field, $\operatorname{char}(k)=p \geq 0$,
- $\ell \neq p$ a prime
- S smooth geometrically connected k-variety
- $|S|$ set of closed points of S, η generic point

Introduction and notation

- k infinite finitely generated field, $\operatorname{char}(k)=p \geq 0$,
- $\ell \neq p$ a prime
- S smooth geometrically connected k-variety
- $|S|$ set of closed points of S, η generic point
- For $s \in S, k(s)$ residue field, \bar{s} associated geometric point

Introduction and notation

- k infinite finitely generated field, $\operatorname{char}(k)=p \geq 0$,
- $\ell \neq p$ a prime
- S smooth geometrically connected k-variety
- $|S|$ set of closed points of S, η generic point
- For $s \in S, k(s)$ residue field, \bar{s} associated geometric point
- $S \leq d:=\{s \in|S|$ with $[k(s): k] \leq d\}$

Introduction and notation

- k infinite finitely generated field, $\operatorname{char}(k)=p \geq 0$,
- $\ell \neq p$ a prime
- S smooth geometrically connected k-variety
- $|S|$ set of closed points of S, η generic point
- For $s \in S, k(s)$ residue field, \bar{s} associated geometric point
- $S \leq d:=\{s \in|S|$ with $[k(s): k] \leq d\}$
- $f: X \rightarrow S$ smooth proper morphism

Introduction and notation

- k infinite finitely generated field, $\operatorname{char}(k)=p \geq 0$,
- $\ell \neq p$ a prime
- S smooth geometrically connected k-variety
- $|S|$ set of closed points of S, η generic point
- For $s \in S, k(s)$ residue field, \bar{s} associated geometric point
- $S \leq d:=\{s \in|S|$ with $[k(s): k] \leq d\}$
- $f: X \rightarrow S$ smooth proper morphism
- For $s \in S, X_{s}$ and $X_{\bar{s}}$ corresponding fibers

Introduction and notation

- k infinite finitely generated field, $\operatorname{char}(k)=p \geq 0$,
- $\ell \neq p$ a prime
- S smooth geometrically connected k-variety
- $|S|$ set of closed points of S, η generic point
- For $s \in S, k(s)$ residue field, \bar{s} associated geometric point
- $S \leq d:=\{s \in|S|$ with $[k(s): k] \leq d\}$
- $f: X \rightarrow S$ smooth proper morphism
- For $s \in S, X_{s}$ and $X_{\bar{s}}$ corresponding fibers

Introduction and notation

- k infinite finitely generated field, $\operatorname{char}(k)=p \geq 0$,
- $\ell \neq p$ a prime
- S smooth geometrically connected k-variety
- $|S|$ set of closed points of S, η generic point
- For $s \in S, k(s)$ residue field, \bar{s} associated geometric point
- $S \leq d:=\{s \in|S|$ with $[k(s): k] \leq d\}$
- $f: X \rightarrow S$ smooth proper morphism
- For $s \in S, X_{s}$ and $X_{\bar{s}}$ corresponding fibers

Problem:

Study arithmetic and geometric properties of X_{s} and $X_{\bar{s}}$ while s is varying in S

- Smooth and proper base change

- Smooth and proper base change

- Write:

$$
\rho_{\ell}\left(\pi_{1}(S)\right):=\Pi_{\ell} \quad \rho_{\ell}\left(\pi_{1}(k(s))\right):=\Pi_{\ell, s}
$$

- Smooth and proper base change

- Write:

$$
\rho_{\ell}\left(\pi_{1}(S)\right):=\Pi_{\ell} \quad \rho_{\ell}\left(\pi_{1}(k(s))\right):=\Pi_{\ell, s}
$$

- Consider the inclusion

$$
\Pi_{\ell, s} \subseteq \Pi_{\ell}
$$

Hilbert's irreducibility theorem (+ Frattini argument)

Proposition (J.P. Serre, T. Terasoma, ~ '85)
There exist infinitely many $s \in|S|$ such that $\Pi_{\ell, s}=\Pi_{\ell}$

Hilbert's irreducibility theorem (+ Frattini argument)

Proposition (J.P. Serre, T. Terasoma, ~ '85)
There exist infinitely many $s \in|S|$ such that $\Pi_{\ell, s}=\Pi_{\ell}$

Application
$\rho_{\ell, s}$ semisimple for all $s \in|S| \Rightarrow \rho_{\ell}$ semisimple.

Uniform open image theorem

Consider the statement:
$(U O I, X \rightarrow S, \leq d): \Pi_{\ell, s}$ is open in Π_{ℓ} for all but finitely many $s \in S^{\leq d}$ and for all such s,

$$
\left[\Pi_{\ell}: \Pi_{\ell, s}\right] \leq C:=C(\ell, d, X \rightarrow S)
$$

Uniform open image theorem

Consider the statement:
$(U O I, X \rightarrow S, \leq d): \Pi_{\ell, s}$ is open in Π_{ℓ} for all but finitely many $s \in S^{\leq d}$ and for all such s,

$$
\left[\Pi_{\ell}: \Pi_{\ell, s}\right] \leq C:=C(\ell, d, X \rightarrow S)
$$

Theorem
($U O I, X \rightarrow S, \leq d$) holds if S is a curve and for

- (A.Cadoret, A. Tamagawa '13) $p=0$ and d arbitrary

Uniform open image theorem

Consider the statement:
$(U O I, X \rightarrow S, \leq d): \Pi_{\ell, s}$ is open in Π_{ℓ} for all but finitely many $s \in S \leq d$ and for all such s,

$$
\left[\Pi_{\ell}: \Pi_{\ell, s}\right] \leq C:=C(\ell, d, X \rightarrow S)
$$

Theorem
($\mathrm{UOI}, X \rightarrow S, \leq d$) holds if S is a curve and for

- (A.Cadoret, A. Tamagawa '13) $p=0$ and d arbitrary
- (E.A. '16) $p>0$ and $d=1$

Applications

S curve and $p=0($ resp $p>0)$
For every $d>0($ resp $d=1)$ exists $C:=C(\ell, d, X \rightarrow S)$ that

Applications

S curve and $p=0($ resp $p>0)$
For every $d>0($ resp $d=1)$ exists $C:=C(\ell, d, X \rightarrow S)$ that

- (A.Cadoret, A. Tamagawa '13-E.A.'17) If $X \rightarrow S$ abelian scheme then

$$
\left|X_{s}\left[\ell^{\infty}\right](k(s))\right| \leq C
$$

for all $s \in S^{\leq d}$.

Applications

S curve and $p=0($ resp $p>0)$
For every $d>0($ resp $d=1)$ exists $C:=C(\ell, d, X \rightarrow S)$ that

- (A.Cadoret, A. Tamagawa '13-E.A.'17) If $X \rightarrow S$ abelian scheme then

$$
\left|X_{s}\left[\ell^{\infty}\right](k(s))\right| \leq C
$$

for all $s \in S \leq d$.

- (A.Cadoret, F. Charles '16-E.A.'17) If X_{s} satisfies Tate conjecture for all $s \in S$ then

$$
\left|\operatorname{Br}\left(X_{\bar{s})}\right)\left[\ell^{\infty}\right]^{\pi_{1}(k(s))}\right| \leq C
$$

for all $s \in S \leq d$

Specilization of the geometric Néron-Severi groups

- $\operatorname{NS}\left(X_{\bar{s}}\right)$ Néron-Severi group of $X_{\bar{s}}$

Specilization of the geometric Néron-Severi groups

- $N S\left(X_{\bar{s}}\right)$ Néron-Severi group of $X_{\bar{s}}$
- Cycle class map:

$$
c h_{X_{\bar{s}}}: N S\left(X_{\bar{s}}\right) \otimes \mathbb{Q} \rightarrow H^{2}\left(X_{\bar{s}}, \mathbb{Q}_{\ell}(1)\right)
$$

Specilization of the geometric Néron-Severi groups

- $N S\left(X_{\bar{s}}\right)$ Néron-Severi group of $X_{\bar{s}}$
- Cycle class map:

$$
c h_{X_{\bar{s}}}: N S\left(X_{\bar{s}}\right) \otimes \mathbb{Q} \rightarrow H^{2}\left(X_{\bar{s}}, \mathbb{Q}_{\ell}(1)\right)
$$

- For $s \in|S|$, injective map:

$$
s p_{\eta, s}: N S\left(X_{\bar{\eta}}\right) \otimes \mathbb{Q} \hookrightarrow N S\left(X_{\bar{s}}\right) \otimes \mathbb{Q}
$$

compatible with

$$
H^{2}\left(X_{\bar{\eta}}, \mathbb{Q}_{\ell}(1)\right) \simeq H^{2}\left(X_{\bar{s}}, \mathbb{Q}_{\ell}(1)\right)
$$

and with $c h_{X_{\overline{5}}}, c h_{X_{\bar{\eta}}}$

Consider the statement:

$$
(N S, X \rightarrow S): \Pi_{\ell, s} \text { open in } \Pi_{\ell} \Rightarrow s p_{\eta, s} \text { isomorphism. }
$$

Consider the statement:

$$
(N S, X \rightarrow S): \Pi_{\ell, s} \text { open in } \Pi_{\ell} \Rightarrow s p_{\eta, s} \text { isomorphism. }
$$

Theorem
($N S, X \rightarrow S$) is true if:

- (Y. André '96, A. Cadoret '12) $p=0$

Consider the statement:

$$
(N S, X \rightarrow S): \Pi_{\ell, s} \text { open in } \Pi_{\ell} \Rightarrow s p_{\eta, s} \text { isomorphism. }
$$

Theorem
($N S, X \rightarrow S$) is true if:

- (Y. André '96, A. Cadoret '12) $p=0$
- (E.A.'17) $p>0$ and $X \rightarrow S$ is projective

Applications

$$
p=0 \text { (resp } p>0 \text { and } X \rightarrow S \text { projective })
$$

Applications

$p=0$ (resp $p>0$ and $X \rightarrow S$ projective)

- If X_{s} satisfies Tate conjecture for $s \in|S|$ then X_{η} satisfies Tate conjecture.

Applications

$p=0$ (resp $p>0$ and $X \rightarrow S$ projective)

- If X_{s} satisfies Tate conjecture for $s \in|S|$ then X_{η} satisfies Tate conjecture.
- (D. Maulik, B.Poonen '12) If X_{s} projective for all $s \in|S|$ then there is an open subset $U \subseteq S$ with $X_{U} \rightarrow U$ projective.

Applications

$p=0$ (resp $p>0$ and $X \rightarrow S$ projective)

- If X_{s} satisfies Tate conjecture for $s \in|S|$ then X_{η} satisfies Tate conjecture.
- (D. Maulik, B.Poonen '12) If X_{s} projective for all $s \in|S|$ then there is an open subset $U \subseteq S$ with $X_{U} \rightarrow U$ projective.
- (A.Cadoret, F. Charles '16-E.A.'17) If S curve and $\bar{\Pi}_{\ell}{ }^{z a r}$ connected then for every $d>0($ resp $d=1)$
$\exists C:=C(\ell, d, X \rightarrow S)$ with

$$
\left[\operatorname{Br}\left(X_{\bar{s}}\right)\left[\ell^{\infty}\right]^{\pi_{1}(s)}: \operatorname{Br}\left(X_{\bar{\eta}}\right)\left[\ell^{\infty}\right]^{\pi_{1}(\eta)}\right] \leq C
$$

for all but finitely many $s \in S \leq d$

Main ideas in the proof when $p=0$

- Variational Hodge conjecture (i.e. Lefschetz theorem on (1,1)-classes + Théorie de Hodge II (P.Deligne '71)) \Rightarrow specialization of $N S\left(X_{\bar{s}}\right)$ in Betti cohomology controlled via the action of topological fundamental group of S.

Main ideas in the proof when $p=0$

- Variational Hodge conjecture (i.e. Lefschetz theorem on (1,1)-classes + Théorie de Hodge II (P.Deligne '71)) \Rightarrow specialization of $N S\left(X_{\bar{s}}\right)$ in Betti cohomology controlled via the action of topological fundamental group of S.
- Comparison between singular and étale cohomology \Rightarrow action studied via the relationship between Π_{ℓ} and $\Pi_{\ell, s}$

Main ideas in the proof when $p>0$

- Find replacement for

1. Variational Hodge conjecture

Main ideas in the proof when $p>0$

- Find replacement for

1. Variational Hodge conjecture
2. Comparison between Betti and ℓ-adic cohomology.

Main ideas in the proof when $p>0$

- Find replacement for

1. Variational Hodge conjecture
2. Comparison between Betti and ℓ-adic cohomology.

- 1 is replaced with the variational Tate conjecture in crystalline cohomology (M.Morrow ('14))

Main ideas in the proof when $p>0$

- Find replacement for

1. Variational Hodge conjecture
2. Comparison between Betti and ℓ-adic cohomology.

- 1 is replaced with the variational Tate conjecture in crystalline cohomology (M.Morrow ('14))
- 2 is replaced with the comparison of monodromy groups via the Tannaka formalism. More precisely:
- Instead of Π_{ℓ} and $\Pi_{\ell, s}$ consider

$$
{\overline{\Pi_{\ell}}}^{z a r}:=G_{\ell} \quad{\overline{\Pi_{\ell, s}}}^{z a r}:=G_{\ell, s}
$$

- Instead of Π_{ℓ} and $\Pi_{\ell, s}$ consider

$$
{\overline{\Pi_{\ell}}}^{z a r}:=G_{\ell} \quad{\overline{\Pi_{\ell, s}}}^{z a r}:=G_{\ell, s}
$$

- $\operatorname{Rep}_{\mathbb{Q}_{\ell}}\left(G_{\ell}\right) \simeq<\rho_{\ell}>$, with $<\rho_{\ell}>$ smallest Tannaka category generated by ρ_{ℓ}
- Instead of Π_{ℓ} and $\Pi_{\ell, s}$ consider

$$
{\overline{\Pi_{\ell}}}^{z a r}:=G_{\ell} \quad{\overline{\Pi_{\ell, s}}}^{z a r}:=G_{\ell, s}
$$

- $\operatorname{Rep}_{\mathbb{Q}_{\ell}}\left(G_{\ell}\right) \simeq<\rho_{\ell}>$, with $<\rho_{\ell}>$ smallest Tannaka category generated by ρ_{ℓ}
- $\Pi_{\ell, s}$ open in $\Pi_{\ell} \Leftrightarrow G_{\ell, s}^{0}=G_{\ell}^{0}$
- Instead of Π_{ℓ} and $\Pi_{\ell, s}$ consider

$$
{\overline{\Pi_{\ell}}}^{z a r}:=G_{\ell} \quad{\overline{\Pi_{\ell, s}}}^{z a r}:=G_{\ell, s}
$$

- $\operatorname{Rep}_{\mathbb{Q}_{\ell}}\left(G_{\ell}\right) \simeq<\rho_{\ell}>$, with $<\rho_{\ell}>$ smallest Tannaka category generated by ρ_{ℓ}
- $\Pi_{\ell, s}$ open in $\Pi_{\ell} \Leftrightarrow G_{\ell, s}^{0}=G_{\ell}^{0}$
- Thanks to C.Lazda ('16), we have an overconvergent F-isocrystal $R^{2} f_{*} \mathcal{O}_{X / K}^{\dagger}$.
- Instead of Π_{ℓ} and $\Pi_{\ell, s}$ consider

$$
{\overline{\Pi_{\ell}}}^{z a r}:=G_{\ell} \quad{\overline{\Pi_{\ell, s}}}^{z a r}:=G_{\ell, s}
$$

- $\operatorname{Rep}_{\mathbb{Q}_{\ell}}\left(G_{\ell}\right) \simeq<\rho_{\ell}>$, with $<\rho_{\ell}>$ smallest Tannaka category generated by ρ_{ℓ}
- $\Pi_{\ell, s}$ open in $\Pi_{\ell} \Leftrightarrow G_{\ell, s}^{0}=G_{\ell}^{0}$
- Thanks to C.Lazda ('16), we have an overconvergent F-isocrystal $R^{2} f_{*} \mathcal{O}_{X / K}^{\dagger}$.
- Consider $<R^{2} f_{*} \mathcal{O}_{X / K}^{\dagger}>$. Tannaka formalism \Rightarrow there are algebraic groups G_{p} and $G_{p, s}$.
- Instead of Π_{ℓ} and $\Pi_{\ell, s}$ consider

$$
{\overline{\Pi_{\ell}}}^{z a r}:=G_{\ell} \quad{\overline{\Pi_{\ell, s}}}^{z a r}:=G_{\ell, s}
$$

- $\operatorname{Rep}_{\mathbb{Q}_{\ell}}\left(G_{\ell}\right) \simeq<\rho_{\ell}>$, with $<\rho_{\ell}>$ smallest Tannaka category generated by ρ_{ℓ}
- $\Pi_{\ell, s}$ open in $\Pi_{\ell} \Leftrightarrow G_{\ell, s}^{0}=G_{\ell}^{0}$
- Thanks to C.Lazda ('16), we have an overconvergent F-isocrystal $R^{2} f_{*} \mathcal{O}_{X / K}^{\dagger}$.
- Consider $<R^{2} f_{*} \mathcal{O}_{X / K}^{\dagger}>$. Tannaka formalism \Rightarrow there are algebraic groups G_{p} and $G_{p, s}$.
- Via independence techniques

$$
G_{\ell}^{0}=G_{\ell, s}^{0} \Leftrightarrow G_{p}^{0}=G_{p, s}^{0}
$$

