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Introduction

"The old Marx said:

if you look at the individual capitalist,

you don't understand capitalism.

Look at the whole phenomenon,

in a scienti�c way, and you'll see it"

Fausto Bertinotti

How much information can we deduce from the cohomology?
Trying to answer to this question is one of the major input for the development of Arithmetic geometry
in the last sixty years. Regarding the abelian varieties Tate, in the article [Tat66], proposed the following
conjecture:

Over a �nitely generated �eld k, an abelian variety A is uniquely determined, up to isogeny, from the
Γk-representation H1(A,Ql). Moreover, the representation H1(A,Ql) is semisimple.

The key point is to show that, using the isomorphism H1(A,Ql)′ → Vl(A), the functor Vl is fully faithful.
Really we will get something more precise: even the functor Tl is fully faithful.
Tate was able to prove the conjecture over �nite �elds but his major contribution was to relate the
conjecture to a �niteness statement. In particular, he showed that if in�nitely many abelian varieties
with a polarization of a �xed degree inside a given isogeny class are isomorphic, and some other technical
conditions are satis�ed, then the conjecture is true. Then he proved that these conditions were satis�ed
by �nite �elds.

After a decade, Zarhin trying to prove the conjecture over �nitely generated �eld of positive char-
acteristic, re�ned the method of Tate, understanding how just the �niteness conditions were enough.
Moreover, with his celebrated Zarhin trick, he reduced the problem to the case of principally polarized
abelian varieties. In [Zar73b] the conjecture over �elds of �nite characteristic of transcendence degree 1
was �nally proved. The idea to prove the �niteness condition is reminiscent of the proof of Mordell-Weil
theorem. Indeed the key step is to use the Northcott's property of the height, not applied to the points of
the abelian variety, but directly to the points of the moduli space of abelian varieties. With these ideas in
mind, he proved that all the abelian varieties that are involved in the �niteness condition share the same
height; a descent argument concludes the proof. One of the key point of Zarhin's proof is to combine
some formulas proved by Mumford, in [Mum66] , and the non archimedean inequality (all the valuations
in positive characteristic are non archimedean!). The proof over �elds with higher transcendence degree
can be done in two ways. The �rst, due to Zarhin, is to replace the role of the height with a su�cient
weaker notion. The second, done by Mori in [Mor77], is to do an induction on the transcendence degree
and perform a specialization argument.

The most interesting situation of number �elds was still unsolved. The interest of the conjecture over
number �elds was also motived by its link with Shafarevich's conjecture and hence with the Mordell's
conjecture. In particular, in [Fal83], Faltings proved the Tate and deduced the other two conjectures
from this. The main ingredients of the proof are the same of the proof of Zarhin, in the sense that the
idea is again to prove that the height of the points on the moduli space associated to a family of abelian
variety is bounded. But, over the number �elds, there are some additional complications due to the
presence of archimedean valuations. The way to deal with this problem is to introduce the notion of
hermitian line bundle and use it to de�ne a new height on an abelian variety. Using a lot of arithmetics,
as Neron models, p-divisible groups and the theory of Hodge Tate representations, Faltings was able to
bound this height inside a family and then, using some moduli theoretic techniques, to compare it with
the modular height in a way that allowed him to bound the last one. For the comparison we will sketch
a di�erent pattern, following [DDSMS99].
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It is worth mentioning that this conjecture is a particular case of a more general one. Indeed, the
general Tate conjecture predicts that, if X is a good variety over a �nitely generated �eld k, the cycle
map Chi(X)⊗Ql → H2i(X,Ql)(r)Γk is surjective and that the cohomology groups are semisimple. The
relation between the Tate conjecture how stated before and this version, for the H1 of an abelian variety,
depends on the commutativity of the following diagram and some diagram chasing:

Hom(A,B) Pic0(A,B)

H2(A×B′,Ql)(1)

H1(A,Ql)⊗H1(B′,Ql)(1)

Hom(Vl(A), Vl(B)) Vl(A)′ ⊗ Vl(B)

The general Tate conjecture is still widely open. There are just few other cases known, in particular
in the last years the conjecture was proved for the K3 surfaces over any �nitely generated �eld of
characteristic di�erent from 2. The proofs for the K3 are inspired by the Deligne's proof of the purity on
K3 surfaces, using the Kuga�Satake construction that associate to every K3 an abelian variety. Using
this construction is possible to reduce the conjecture for K3 to abelian variety.

The mémoire is organized as follows.
In the �rst chapter, following a combinations of the work of Zarhin and Tate, we will show how the
conjecture is related to some �niteness conditions and we will perform some preliminary reductions.
In the second chapter, we will recall the proof of some general theorems that imply the �niteness condition
over �nite �elds.
In the third chapter, we will prove the so called Zarhin trick and some useful tools about polarizations.
In the fourth chapter, we will prove the conjecture over �nitely generated �elds of positive characteristic
di�erent from 2, following Zarhin and Mori.
In the last chapter, we will prove the conjecture over number �elds.
In the appendix, for the convenience of the reader, we recall some general algebraic geometry theorems
and some facts about abelian varieties and p-divisible groups.
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Chapter 1

Tate conjecture and �niteness

conditions

In this section k is any �eld of characteristic p ≥ 0, l is a prime di�erent from p and A,B are abelian
varieties over k. De�ne V arAbTl as the category of abelian varieties with Hom(A,B) = Hom(A,B)⊗Zl
and V arAbVl in the same way. We have two functor Tl : V arAbTl → Rep(Γk) that associate to every
abelian variety its Tate module Tl(A) and in the same way we have the functor Vl.

Conjecture 1.0.1 (Tate conjecture). a
If k is �nitely generated over its prime �eld, then:
1)Tl is fully faithful
2)Vl(A) is a semisimple representation.

The aim of this thesis is to prove the following:

Theorem 1.0.2. The Tate conjecture is true.
1)For �nite �elds (Tate, [Tat66]).
2)For function �elds of positive characteristic di�erent from 2 (Zarhin, [Zar73b] and Mori, [Mor77]).
3)For number �elds (Faltings, [Fal83]).

Example. Observe that the conjecture is false when k = k, with, say, char(k) = 0. In fact Vl(A) ' Q2g
l ,

as representation, for every abelian variety of dimension g. It is not hard to show that the Tate conjecture
implies that two abelian varieties A,B are isogenous if and only if Vl(A) and Vl(B) are isomorphic as
representation. In particular, if the Tate conjecture would be true over k then all the abelian varieties
of the same dimension would be isomorphic. And this is clearly not true.

In the next section we will do some reductions that are common to all the proofs.

1.1 Preliminary reductions

The aim of this section is to study the functor Tl : V arAbTl(k)→ Rep(Γk). In particular we will show
that it is faithful and how the semisimplicity and the fullness are related to some �niteness conditions.
We start with a remark that it will be used several times in the sequel.

Remark. It follows from the existence of quotient for subgroups of A that if f : A→ B kills the n torsion,
then it is divisible by n in Hom(A,B).

Lemma 1.1.1. Hom(A,B) is torsion free.

Proof. To prove that Hom(A,B) is torsion free It is enough to show that the map Hom(A,B) →
Hom(Tl(A), Tl(B)) is injective. But if Tl(f) = 0 then f is zero on the ln torsion for every n. Then
for every simple abelian sub variety of A, f is zero on a non �nite subgroup and hence it is zero. Now
theorem A.1.2 implies that f is zero.

Proposition 1.1.2. The functor Tl is faithful. In particular Hom(A,B) is free and �nitely generated.
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Proof. • Step 1. For every �nitely generated subgroup M of Hom(A,B), M ⊗ Q ∩ Hom(A,B) is
�nitely generated
Using A.1.2, we can assume A simple and A = B. Then, by A.1.3, there exists a polynomial
function α : End(A)⊗Q→ Q such that α(f) = deg(f). Since A is simple deg(f) > 0 and it is an
integer for every f ∈ End(A). Since Q⊗M is �nite dimensional and |α| < 1 in a neighborhood U
of 0 in this space, we get that U ∩ End(X) = 0. So End(X) ∩ Q ⊗M is discrete in Q ⊗M and
hence �nitely generated.

• The map is injective.
It is enough to show that it is injective on every �nitely generated submodule such that M =
M ⊗ Q ∩ M . Suppose that f1, ..., fn is a basis of M and that

∑
aifi is sent to zero. Choose

sequences ni(r) that converge to ai. For r >> 0 the power of l dividing ni(r) becomes constant
and we denote m the maximum of this powers. But since Tl(f) = 0, the power of l dividing∑
ni(r)Tl(f) is divisible for arbitrary large power of l. In particular

∑
ni(r)fi kills the lm+1

torsion and hence
∑
ni(r)fi = ln+1g for some g in Q⊗M ∩Hom(A,B) = M and this contradicts

the previous observation, since the fi are a basis of M .

Now we reduce the study of the fullness to a study of a Ql vector space.

Lemma 1.1.3. The coker of the map Hom(A,B)⊗Zl → Hom(Tl(A), Tl(B)) is torsion free. In partic-
ular, the fullness of the functor Tl is equivalent to the fullness of the functor Vl, thanks to the �atness of
Ql over Zl.

Proof. Suppose that ψ ∈ Hom(Tl(A), Tl(B)) is such that lnψ = Tl(f). Then f kills the ln torsion so
that φ = lng for some g and hence ψ = Tl(g).

Lemma 1.1.4. If the Tate conjecture is true over a �nite Galois extension K of k, it is true over k.

Proof. Suppose that the Tate conjecture is true for every A over K. Then if A is an abelian variety over
k we have that Vl(A)ΓK is semisimple by assumption, so that, since ΓK is of �nite index in Γk, Vl(A) is
semisimple as Γk module. For the surjectivity observe that by assumption and Galois descent we have
Hom(A,B) ⊗ Ql = Hom(AK , BK)Γk ⊗ Ql = (Hom(AK , BK) ⊗ Ql)Γk = (Hom(Tl(A), Tl(B))ΓK )Γk =
Hom(Tl(A), Tl(B))Γk

Lemma 1.1.5. It is enough to prove the conjecture for A = B.

Proof. Indeed to prove it for A 6= B it is enough to applied it for A×B, use the decomposition End(A×
B) = End(A) × End(B) × Hom(A,B) × Hom(B,A) and the similar decomposition for End(Vl(A ×
B)).

Lemma 1.1.6. End(A)⊗Ql is a semisimple algebra

Proof. Thanks to A.2.3 it enough to prove that End(A) ⊗ Q is semisimple. By theorem A.1.2 A is
isogenous to An1

1 ×...×A
nj
j with the Ai simple and pairwise not isogenous. Observe thatHom(Anii , A

nj
j ) =

0 if i 6= j and that Hom(Anii , A
ni
i ) = Mni(End(Ai)) so that End(A) ⊗ Q '

∏
Mni(End(Ai)) ⊗ Q =∏

Mni(End(Ai) ⊗ Q). To conclude it enough to observe that End(Ai) ⊗ Q is a division algebra, since
Ai is simple.

Proposition 1.1.7. To prove the Tate conjecture it is enough to prove the following assertion:
For every abelian variety B, for every Galois stable submodule W of Vl(B), there exists an u ∈ End(B)⊗
Ql such that uVl(B) = W .

Proof. • Vl(A) is semisimple. Take a Γk invariant submodule W and consider the right ideal I ⊆
End(A) ⊗ Ql made by those element u such that u(Vl(A)) ⊆ W . By 1.1.6 and A.2.2 we get that
I = eEnd(A) ⊗ Ql where e is an idempotent. By hypothesis eVl(A) = W and hence Vl(A) =
eW ⊕ (1− e)W . To conclude we just observe that this decomposition is Γk invariant since e comes
from End(A)⊗Ql.
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• Clearly End(A)⊗Ql ⊆ End(Vl(A))Γk so we have only to show the other inclusion. Using 1.1.6 and
A.2.1 it is enough to show that End(Vl(A))Γk ⊆ CentrEnd(Vl(A))(CentrEnd(Vl(A))(End(A) ⊗ Ql))
and so we take an element β in the �rst and a γ in CentrEnd(Vl(A))(End(A)⊗Ql) and we want to
show that βγ = γβ. The trick is to consider the following space

W = {(x, βx) | x ∈ Tl(A)}

By the assumption applied to A×A, there exists an u ∈ End(A×A)⊗Ql such that uVl(A×A) = W .

Observe that

[
γ 0
0 γ

]
commutes with u. Then we have:

{(γx, γβx) | x ∈ Tl(A)} =

[
γ 0
0 γ

]
W =

[
γ 0
0 γ

]
uVl(A×A) =

= u

[
γ 0
0 γ

]
Vl(A×A) ⊆ uVl(A×A) = W

so that (γx, γβx) ∈W for every x and hence γβx = βγx.

We have a polarization λ : A→ A′ of some degree d.

Proposition 1.1.8 (Zarhin, [Zar73a]). To prove the Tate conjecture, we can assume in proposition 1.1.7
that W is maximal isotropic with respect of the Weil pairing induced by some polarization.

Proof. Suppose that we know that for every abelian varieties B and every maximal isotropic Galois
invariant subspace M of Vl(B) there exists a u ∈ End(B)⊗Ql such that uVl(B) = M .

• if i ∈ Ql where i is such that i2 = −1.
Consider in Vl(A × A) the subspaces W1 = {(x, ix)|x ∈ W}, W2 = {(x,−ix)|x ∈ W⊥} and
W3 = W1 +W2.

Claim: W3 is maximal isotropic with respect the pairing induced by λ× λ

Proof. 1. W1 and W2 are totally isotropic. For example for W1 we have eλ×λA×A((x, ix), (y, iy)) =

eλA(x, y) + eλA(ix, iy) = eλA(x, y) + i2eλA(x, y) = 0 and the same for W2.

2. W1 and W2 are clearly orthogonal to each other and W1 ∩W2 = 0

3. So Dim(W3) = Dim(W1) +Dim(W2) = 1
2Dim(Vl(A×A)) (since W⊥ has dimension

Dim(Vl(A)−Dim(W )), since the pairing is non degenerate) and so W3 is totally isotropic of
the maximal dimension and hence maximal isotropic.

So we have that there exists a u =

[
u1,1 u1,2

u2,1 u2,2

]
∈M2(End(A)) = End(A×A) such that uVl(A×

A) = W3. Now we consider the map v = (π1− iπ2)◦u, where πi are the canonical projections. The
image of this map isW , so that we get two elements f = u1,2−iu2,1, g = u1,2−iu2,2 ∈ End(A)⊗Ql
such that fVl(A) + gVl(A) = W . To conclude we observe that the right ideal of elements v such
that vVl(A) ⊆W is generated by an idempotent element e, thanks to A.2.2, and that eVl(A) = W

• The proof without the assumption i ∈ Ql is similar, but requires the so called Zarhin Trick. Recall
that every positive integer can be written as a sum of four squares thanks to Lagrange's four
squares theorem. This implies that in Ql we can always write −1 as sum of four squares, say
a2 + b2 + c2 + d2 = −1, since a polynomial as a solution in Zl in and only if it a solution modulo
ln for every n. Now consider the matrix

M =


a −b −c −d
b a d −c
c −d a b
d c −b a


and observe that M tM = −Id, so that this matrix will take care of the absence of i ∈ Ql.
As before de�ne W1 = {(x,Mx) x ∈W 4}, W2 = {(x,−Mx) x ∈ (W 4)⊥} and W3 = W1 +W2.
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Claim: W3 is maximal isotropic for the pairing induced by λ8

Proof. 1. W1 and W2 are totally isotropic. For W1 we have eλ
8

A8((x,Mx), (y,My)) = eλ
4

A4(x, y) +

eλ
4

A4(Mx,My) = eλ
4

A4(x, y) + eλ
4

A4(M tMx, y) = 0 and the same for W2.

2. W1 and W2 are clearly orthogonal to each other and W1 ∩W2 = 0

3. So Dim(W3) = Dim(W1)+Dim(W2) = 1
2Dim(Vl(A

8)) (since W⊥ has dimension Dim(Vl(A)
− Dim(W )) and so W3 is totally isotropic of the maximal dimension and hence maximal
isotropic.

As before we get u1, ..., u8 ∈ End(A) ⊗ Ql such that u1Vl(A) + .... + u8Vl(A) = W and hence an
element such that eVl(A) = W

1.2 Finiteness conditions

So we have to study maximal isotropic Galois invariant subspaces W of Vl(A). Intersecting one on
this W with Tl(A) we get an l-divisible subgroup G = {Gn := W∩Tl(A)+lnTl(A)

lnTl(A) } of A[l∞]. We now de�ne

Bn = A
Gn

. The multiplication by ln in A factors trough Bn so that we have isogenies ψn : Bn → A and
commutative diagrams:

Tl(A)

Tl(Bn) Tl(A)

ln

Tl(ψn)

Observe that Im(Tl(ψn)) = W ∩ Tl(A) + lnTl(A) := Xn. It is clear that lnTl(A) ⊆ Im(Tl(ψn)) and
hence it is enough to prove that Im(Tl(ψn))

lnTl(A) = W∩Tl(A)+lnTl(A)
lnTl(A) and this is the de�nition of Gn.

The key observation of Tate is the following.

Proposition 1.2.1 (Tate, [Tat66]). If these Bn fall into �nitely many isomorphism classes, the hypoth-
esis of 1.1.7 are satis�ed.

Proof. There exists a Bn0
such that we have in�nitely many isomorphisms αn : Bn0

→ Bn. Consider
un = ψn ◦αn ◦ψ−1

n0
, it is an element of End(A)⊗Ql such that Vl(un) send in a surjective way (since αn

is an iso) Xn0 to Xn.

Bn0
Bn Tl(Bn0

) Tl(Bn)

A A Xn0 Xn Xn0

Vl(A) Vl(A)

ψn0

αn

ψn

Tl(αn)

Tl(ψn0
) Tl(ψn)

Vl(un)

Vl(un)

Observe that this is a subset of Xn0 and hence Vl(un) ∈ End(Xn0) ⊆ End(Vl(A)). This is compact ,
so that there exists a subsequence indexed by some I that is converging to some v. Since the image of
End(A) ⊗ Ql is compIete, v = Vl(u) for some u ∈ End(A) ⊗ Ql. This u will do the work, i.e we will
prove that Vl(u)(Vl(A)) = W .

• Vl(u)(Xn0) = ∩n∈IXn

In fact if x ∈ Xn0
Vl(u)(x) = limVl(un)(x) ∈ ∩n∈IXn. If y ∈ ∩n∈IXn then for every i ∈ I we can

�nd xn such that Vl(un)(xn) = y. From xn we can extract a subsequence that converge to some
x, since Xn0

is compact. Then y = limnVl(un)(xn) = Vl(u)(x) ∈ u(Xn0
).

• u(Vl(A)) = W
Now observe that ∩n∈IXn = Vl(A) ∩W so that we get

Vl(u)(Vl(A)) = ∪n∈ZVl(u)(lnXn0
) = ∪n∈Zln(Tl(A) ∩W ) = W

7



Before state the main theorem, we make a last important remark. Recall that we have a polarization
λ : A→ A′ of some degree d.

Lemma 1.2.2 (Tate, [Tat66]). For every n, Bn has a polarization of degree d.

Proof. • ψn has degree lng

It is enough to prove that Xn
lnTl(A) has order l

ng. For this recall thatW , since it is maximal isotropic,

it has dimension g and hence Xn
lnTl(A) = W∩Tl(A)+lnTl(A)

lnTl(A) = W∩Tl(A)
W∩lnTl(A)) = W∩Tl(A)

ln(W∩Tl(A)) . To conclude
observe that W ∩ Tl(A) is a free module of rank g.

• The image of the pairing eλnBn lies in lnZl(1)

In fact we have eλnBn(x, y) = eBn(x, ψ′nλψn(y)) = eλA(ψn(x), ψn(y)) and so, since the image of ψn is

Xn, e
λn
Bn

(Tl(Bn), Tl(Bn)) ⊆ eλA(Xn, Xn) ⊆ lnZl(1), where the last equality use the fact that W is
totally isotropic.

• Conclusion of the proof.
We start observing that λn := ψ′nλψn is a polarization of Bn of degree l2ngd, so we have to produce
a polarization ωn : Bn → (Bn)′ such that λn = ωn ◦ ln and this happen if and only λn kills the ln

torsion. But the previous point tell us that the pairing is zero on the ln torsion, since the image of
the pairing restricted to it lives in Zl(1)

lnZl(1) . By the non degeneracy of the pairing, this means that
λn(x) is equal to zero for every x ∈ Bn[ln].

In conclusion, we can summarize the results of this section in the following theorem:

Theorem 1.2.3. The Tate conjecture for l is true if one of the following is true for every abelian varieties
A with a polarization λ of degree d over k:
1)There exist �nitely many B, up to isomorphism, of the same dimension of A with a polarization of
degree d.
2)There exist �nitely many B, up to isomorphism, in a given isogeny class that possess a polarization of
degree d.
3)For every sub l-divisible group G = {Gn} of A[l∞] such that every Bn = A

Gn
has a polarization of

degree d, the Bn fall into �nitely many isomorphism classes.
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Chapter 2

Proof over �nite �elds

In this chapter we prove the Tate conjecture over �nite �elds. The proof has just a little to do with
�nite �elds, since it is a easy consequence of the following three general theorems and theorem 1.2.3.

Theorem 2.0.1. Let A be an abelian variety over a �eld k, L a line bundle with associated morphism
λ and divisor D. Then we have:
1)χ(L) = (D)g

g!

2)Deg(λ) = χ(L)2

3)If L is ample Hi(A,L) = 0 for i > 0

Theorem 2.0.2. Let S be a noetherian scheme, W and V two vector bundles of S, π the projection
P(V )→ S and f ∈ Q[x]. Then the functor

Quotπ∗(W ),V,f,S(T → S) :=

{
surjections π∗TW → Q with Q locally free and �at over OS
and Hilbert polynomial f on each �ber, up to isomorphism

}
is a sub functor of Grass(M) for some vector bundle M over S

Theorem 2.0.3. Let A be an abelian variety over a �eld k, L an ample line bundle on A. Then L3 is
very ample.

Proof. See [Mum85] Chapter 17.

Now we show how this theorems give a proof of the Tate conjecture when k is a �nite �eld using
the �rst point of 1.2.3. We have to show that there exists �nitely many isomorphism classes of abelian
variety of dimension g with a polarization λ of degree d given by an ample line bundle L. Now for
any such abelian variety, thanks to theorem 2.0.3, we have that L3 is very ample and, thanks to 2.0.1,

H0(L3) = χ(L3)3 = c1(L3)g

g! = 3g c1(L)g

g! = 3g
√
Deg(λ) = 3g

√
d, so that it embeds the variety in

P3g
√
d. Moreover the Hilbert polynomial of A inside this Pn is f(n) = χ(L3n) = (c1(L3n))g

g! = (3n)g
√
d

and so depends only on g and d. This shows that each isomorphism class is a distinct element in
Quotk,k3g

√
d,(3n)g

√
d,k(k) so it is a distinct k-point a �xed grassmanian. But this is a scheme of �nite type

over k and so, since k is �nite, it has �nitely many points.

2.1 Riemann Roch theorem

The key input for the proof of Riemann Roch theorem is the computation of the cohomology of the
Poincaré Bundle P of A. In fact we have the following:

Proposition 2.1.1. Denote with p2 the projection A×A′ → A′. We have

Rnp2,∗P =

{
0 if n 6= g
i0(k) if n = g

.

Hn(A×A′,P) =

{
0 if n 6= g
k if n = g

.

Assuming this proposition we can start with the
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Proof. of thm 2.0.1
1)This follows in a trivial way from A.3.5 and the fact that Td(A) = 0, since the tangent space is free
thanks to A.1.15.
2)Assume �rst that L is non degenerate, i.e K(L) is �nite. The trick is to compute χ(Λ(L)) in two
di�erent way, where Λ(L) = m∗L⊗ p∗L−1 ⊗ q∗L−1 = (Id× ψL)∗P thanks to A.1.7. First observe that
we have the following Cartesian diagram:

A×A A×A′

A A′

Id×ψL

q p2

ψL

Thanks to �at base change and the previous proposition we have that

Rnq∗Λ(L) = Rnq∗(id× ψL)∗P = ψ∗L(Rnp2,∗P) =

{
0 if n 6= g
i∗(OK(L)) if n = g

where i : K(L) → A is the inclusion. Since K(L) is �nite (and so of zero cohomological dimension) we
have that Hi(A,Rnq∗Λ(L)) = 0 for every i > 0 and every n. Now consider the Leray spectral sequence
associated to q, i.e Eu,v2 = Hu(A,Rvq∗Λ(L))⇒ Hu+v(A× A,Λ(L)) and observe that, by what we have
said so far, in the second page of the spectral sequence all the term with u 6= 0 are zero, so that we have
an isomorphism Hu(A×A,Λ(L)) ' H0(A,Ruq∗Λ(L)) for all u, and hence

χ(Λ(L)) = (−1)gDeg(ψL)

Now we use the second description of Λ(L). Observe that Riq∗Λ(L) has support in K(L) and that L is
trivial over K(L) (since K(L) is �nite over k). Using this remark and the projection formula we get

Rnq∗Λ(L) = Rnq∗(m
∗L⊗ p∗L−1 ⊗ q∗L−1) = Rnq∗(m

∗L⊗ p∗L−1)⊗ L−1 = Rnq∗(m
∗L⊗ p∗L−1)

. Observe that the isomorphism of A×A, m× p send m∗L⊗ p∗L−1 to q∗L⊗ p∗L−1 so that, using again
the degeneracy of the Leray spectral sequence and the Kunneth formula we get

Hi(A×A,Λ(L)) = Hi(A×A, p∗L⊗ q∗L) = ⊕u+v=iH
u(L)⊗Hv(A,L−1)

so that, using Poincaré duality and the fact that the tangent bundle is free, we get

χ(∆(L)) = χ(L)χ(L−1) = (−1)gχ(L)2

and hence we are done.
If L is degenerate the argument is similar see [MVdG13] page 133
3)In the previous point we have shown that Hi(A×A,Λ(L)) = ⊕u+v=iH

u(A,L)⊗Hv(A,L−1) and that
Hi(A × A,Λ(L)) ' H0(A,Ri∗Λ(L)). Since just when i = g, hi(A × A,Λ(L)) is di�erent from zero and
H0(X,L) is di�erent from zero, we are done.

Before proving the proposition we need a lemma:

Lemma 2.1.2. If L is a non trivial line bundle then in Pic0(A) then Hi(A,L) = 0 for every i.

Proof. Since L ∈ Pic0(A), L−1 ' (−1)∗L thanks to A.1.8. So if L has a non zero global section
s : OA → L then L−1 has a non zero global section f : OA → L−1 and this is not possible since
s⊗ L−1 ◦ f would be an automorphism of OA so that s would be surjective and hence an isomorphism.
SoH0(A,L) = 0 and let i the smallest index such thatHi(A,L) 6= 0. Then, since L ∈ Pic0(A), the choice
of i and the Kunneth formula, Hi(A,m∗L) = Hi(A, p∗L⊗ q∗L) = ⊕p+q=iHp(A,L)⊗Hq(A,L) = 0. But
we have that the identity map of A factor trough the multiplication map, so that the identity map of
Hi(A,L) factor trough Hi(A×A,m∗L) = 0.

Proof. of prop. 2.1.1

• Step 1. proof for n 6= g
Thanks to the previous lemma and the fact that P|A×{p} is non trivial and in Pic0(X) for every
p ∈ A′ − {(0)}, thanks to A.1.8, we have that Hn(Ap,Pp) = 0 so that, by A.3.4, (Rnp2,∗P)p = 0
for every 0 6= p ∈ A′. We get that Rnp2,∗P is supported at the identity (that has cohomological
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dimension 0) and hence Hi(A′, Rnp2,∗P) = 0 for every i > 0. Using again the Leray spectral
sequence Hu(A′, Rvp2,∗P) ⇒ Hu+v(A× A′,P), we found that H0(A′, Rup2,∗P) = Hu(A× A′,P)
for every u ≥ 0. Since p2 is of relative dimension g, Rqp2,∗P = 0 = Hu(A × A′,P) for q > g.
Since P−1 = (−1, 1)P, thanks to A.1.8, we get that, using Poincaré duality and the fact that
the relative cotangent bundle is free, for every u < g Hu(A × A′,P) = H2g−u(A × A′,P−1)′ =
H2g−u(A×A′,P)′ = 0 and so we are done.

• Step 2. HomOA×A′ (P, p
∗
2G) = HomOA′ (R

gp2,∗P, G)
Theorem A.3.3 give us, for every coherent sheaf G on A′ an isomorphism

HomD(A×A′)(P[g], p∗2G[g]) ' HomD(A)(Rp2,∗P[g], G)

. Now the left hand side is nothing else that HomOA,A′ (P, p
∗
2G) while the right hand side is

HomO′A(Rgp2,∗P, G) since, by what we have proved before, Rgp2,∗ has at most one term di�erent
from zero in degree g.

• Step 3. Conclusion of the proof.
Recall that Rgp2,∗P has support in 0 ∈ A′. Now, thanks to theorem A.3.4 and the �rst point, we

have that Rgp2,∗P ⊗ k(0) ' Hg(A × {0},P|A×0) ' Hg(A,OA) = k so that (Rgp2,∗)(0) '
(OA′ )(0)

a
for some ideal a ⊆ m, the maximal ideal of (OA′)(0). We have to show that a = m. If we denote

A(I) = A × (OA′ )(0)
I for every ideal I ⊆ m, we get the following commutative diagram, thanks to

the point 2 and the usual adjunctions, in which all the horizontal arrows are isomorphisms:

HomA(a)(P|A(a),OA(a)) HomA×A′(P,OA(a)) HomA′(
(OA′ )(0)

a ,
(OA′ )(0)

a ) A
a

HomA(m)(P|A(m),OA(m)) HomA×A′(P,OA(m)) HomA′(
(OA′ )(0)

m ,
(OA′ )(0)

m ) A
m = k

The commutativity implies that the �rst vertical map is surjective, so that we can lift the isomor-
phism P|A(m) ' OA(m) to a map P|A(a) ' OA(a). Via Nakayama, this map is surjective and hence
an isomorphism. But this means, thanks to the universality of P, that we have a map A(a)→ A(m)
lying over the natural inclusion and hence m ⊆ a.

2.2 Quot functor

This section is devoted to the proof of theorem 2.0.2. We want to underline that it is possible to
prove a more general theorem, that states the representability of the Quot functor by a locally closed
subscheme of a grassmanian. We don't need this, since we are only interested in the �niteness statement.
The proof of the representability is based on our construction of an injection of the Quot functor in some
grassmanian, but then it requires some more work, since it is necessary to show that this injection is
representable. So, for our purpose, it is enough to do "half" of the proof of the representability. For the
complete proof we refer the interested reader to [Fa05]
We will need a form of a uniform vanishing to make, in an uniform way and using theorem A.3.4, our
�at sheaves locally free.

Proposition 2.2.1. Fix a rational polynomial with integer values f(t) and two natural number p, n.
There exists a positive integer m = m(f, n, p) with the following property:
For every �eld k, for every coherent sheaf F of Pn which is a sub sheaf of OpPn with Hilbert polynomial
f , F(r) is generated by global section and Hi(F(r)) = 0 for i > 0 and every r ≥ m.

The proof is quite technical so we postpone it. Let us show how this implies our theorem.

Proof. of thm 2.0.2

• Step 1. Use of uniform vanishing.
Fix a S scheme T , a coherent quotient π∗TW → F , where F is a coherent sheaf in PnT �at over
OS and with Hilbert polynomial f . Denote the kernel of the map G. On each �ber s → S we
have an exact sequence 0 → Gs → OpPn → Fs → 0 where n = rank(V ) and p = rank(W ).
The last two terms have a �xed Hilbert polynomial. Thanks to the previous proposition there
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exists an r, depending only of W,V and f , such that Hi(Ts,Gs(r)) = Hi(Ts, (π
∗
TW )s(r)) = 0 and

G(r)s, (π
∗
TW (R))s are generated by global section. Thanks to the exact sequence the same is true

for Fs(r).

• Step 2. Construction of the map.
Observe that, thanks to A.3.4 and Hi(Ts,Gs(r)) = 0, RiπT,∗G(r) = 0 for i > 0 so that we have a
surjection πT,∗pi∗TW → πT,∗F . Moreover, since Hi(Ts, (π

∗
TW )s(r)) = Hi(Ts,F(r)) = 0 and again

theorem A.3.4, πT,∗π∗TW and πT,∗F are locally free. Observe that Rank(πT,∗F)(r) = f(r), since
all the higher cohomology of the �bers are zero. Now πT,∗π

∗
TW (r) = W ⊗OS Symr(V ), so that

πT,∗π
∗
TW (r) → πT,∗F(r) ∈ Grass(W ⊗OS Symr(V ), f(r))(T ). So, since everything depends only

on V,W, f we get a map Quot→ Grass(W ⊗OS Symr(V ), f(r)), that send, for every S scheme T ,
a surjection π∗TW → F in πT,∗π∗TW (r)→ πT,∗F(r).

• Step 3. The map is injective.
We have to show that if we know πT,∗π

∗
TW (r) → πT,∗F(r), and hence πT,∗G(r) as kernel of the

map, we can reconstruct π∗TW → F . For this observe that we have the following commutative
diagram with exact rows and surjective vertical maps (since π∗TW and G(r) are generated by global
sections thanks to A.3.4 and so the counits are surjective):

π∗TπT,∗G(r) π∗TπT,∗π
∗
TW (r) π∗TπT,∗F(r) 0

G(r) π∗TW (r) F(r) 0

So we get that (π∗TW (r) → F(r)) = Cocker(G(r) → π∗TW (r)) = Cocker(π∗TπT,∗G(r) → π∗TW (r))
and hence we can recover π∗TW (r) → F(r), since this map is the cokernel of the push via π∗T
of πT,∗G(r) → πT,∗π

∗
TW (r)) composed with the counit. So we can recover π∗TW → πT,∗F just

twisting.

Now we have to prove the uniform vanishing. The idea is to construct a well behaved notion that will
allow us to do induction. We �x a �eld k and we start with a de�nition.

De�nition 2.2.2. A coherent sheaf F on Pn is called m-regular, m ∈ N if for every r ≥ m we have
Hi(F(r − i)) = 0.

Remark. If F is m-regular and H is an hyperplane in Pn that does not contain anyone of the (�nite)
associated points of F we have that F|H is again m-regular over Pn−1, since we have an exact sequence
0→ F (r − 1)→ F (r)→ F|H → 0 (locally the multiplication by xn is injective, where H : xn = 0.)

This is exactly the kind of sheaves that we are looking for thanks to the following lemma.

Lemma 2.2.3. If F is m-regular, then:
1)Hi(Pn,F(r)) = 0 for every r ≥ m− i and i ≥ 1
2)F(r) is generated by global section for every r ≥ m

Proof. Thanks to �at base change we can assume that k is a in�nite �eld. Then we can choose an
hyperplane that does not contain any of the associated point of F , so that we have an exact sequence
0→ F (r − 1)→ F (r)→ F|H → 0.
1)We do induction on n and r = m − i. For n = 0 it's obvious for every r. For r = m − i it is just the
de�nition of m-regularity. Now we just use the exact sequence above, noting that Hi(Pn,F(r − 1)) = 0
by the inductive hypothesis on r and Hi(H,F|H) = 0 thanks to the inductive hypothesis on n.
2)Since for r big enough Hi(Pn,F(r)) is generated by global section, it is enough to prove that the map
H0(Pn,OPn(1))⊗H0(Pn,F(r))→ H0(Pn,F(r + 1)) is surjective and use induction on r.
Again we do induction on n, since for n = 0 is clear. We have the following commutative diagram with
exact rows (thanks to the �rst point and the fact that H0(Pn,OPn(1))→ H0(H,OH) is always surjective)

H0(Pn,OPn(1))⊗H0(Pn,F(r)) H0(H,OH)⊗H0(H,F|H(r)) 0

H0(Pn,F(r)) H0(Pn,F(r + 1)) H0(H,F|H(r + 1))

h

f g
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By induction the right vertical map is surjective, so we get that g is surjective and so H0(Pn,F(r+1)) =
Ker(g) + Im(h) = Im(f) + Im(h). But the Im(f) ⊆ Im(h) and we are done.

So now we can �nd the uniform vanishing using the following proposition.

Proof. of prop. 2.2.1 Thanks to the previous lemma it is enough to show that F is m regular for some
m that depends only on p, n, f . We do induction on n since n = 0 is clear for every polynomial f . Again
we can assume that k is a in�nite �eld. Then we can choose an hyperplane that does not contain any of

the associated point of F and of
OpPn
F , so that we have exact sequences 0→ F (r− 1)→ F (r)→ F|H → 0

and 0 → F|H → OpH . Observe that thanks to the �rst exact sequence, the Hilbert polynomial of F|H
depends only on the Hilbert polynomial of F so that, by induction and using the second exact sequence,
F|H is m0 regular for some m0 that depends only on p, n, f . Now if r ≥ m0 and i > 1 we have an exact
sequences

0→ H0(Pn,F(r − 1))→ H0(Pn,F(r))→ H0(H,F|H(r))→ H1(Pn,F(r − 1))→ H1(Pn,F(r))→ 0

0→ Hi(Pn,F(r − 1))→ Hi(Pn,F(r))→ 0

For r big enough and i > 1 Hi(Pn,F(r)) = 0 and so, thanks to the second exact sequence, get that
Hi(Pn,F(r)) = 0 for every r ≥ m0 and i > 1.
So we have just to take care of i = 1. We have to show that H1(Pn,F(r)) vanishes for all r ≥ m for
some m that depends only on n, p, f . This follows from the following two claim.

• h1(Pn,F(r)) is strictly decreasing as function on r ≥ m0 until it becomes zero.
The �rst exact sequence implies that h1(Pn,F(r)) is decreasing and that
h1(Pn,F(r)) = h1(Pn,F(r−1)) if and only if the map H0(Pn,F(r))→ H0(H,F|H(r)) is surjective.
Now look at the diagram of the proof of the previous lemma. The reasoning done there implies
that if H0(Pn,F(r))→ H0(H,F|H(r)) is surjective then it is surjective for every r′ ≥ r and hence
the map H1(Pn,F(r′)) → H1(Pn,F(r′)) is an isomorphism for r′ ≥ r. But for r′ big enough
H1(Pn,F(r′)) = 0 and hence h1(Pn,F(r)) = 0

• h1(Pn,F(m0)) is bounded by a constant that depends only on n, p, f .
Observe that h1(Pn.F(m0)) = h0(Pn,F(m0)) − χ(F(mo)) since the higher cohomology group are
zero. So we get h1(Pn.F(m0)) = h0(Pn,F(m0))−f(m0). Now we use the hypothesis that F ⊆ OpPn
to get an inclusion F(m0) ⊆ OpPn(m0) and hence that

h0(Pn,F(m0)) ≤ ph0(Pn,OPn(m0)) = p

(
n+m0

n

)
(homogeneous polynomial of degree m0 in n+ 1 variables). So we have that

h1(Pn.F(m0)) ≤ p
(
n+m0

n

)
− f(m0)

and we conclude noticing that all this term depends only on f, p, n.

13



Chapter 3

Interlude: polarizations and theta

groups.

In the future we will have to deal with two problems. The �rst is in the proof of the Tate conjecture
over function �eld, where we will need some condition to avoid the non separable polarizations. In fact,
the theory of moduli spaces for abelian variety with a polarization of �xed degree works well when the
characteristic of the �eld does not divide the degree of the polarization. But it could be that every
polarization on an abelian variety is divisible by the characteristic of the �eld, so we will need some trick
to change our abelian variety.

Example.

In characteristic zero we will need to do some explicit computation on the moduli space and these
computation can be done well over the moduli space of principally polarized abelian variety. So we will
need to change our abelian variety with a principal polarized one.

3.1 Lifting of Polarizations

The key will be a very explicit description of the pairing induced by an isogeny. We will need the
notion of a sheaf with an action of a group, for the de�nition and the main theorem of descent see
[MVdG13], page 98, chapter 7.
Suppose that f : A → B is an isogeny between abelian varieties. Then we have that B ' A

ker(f) ,
so that f∗ induces a bijection between line bundles on B and line bundles on A with an action of
ker(f). Suppose that L ∈ Pic(B) is such that f∗L ' OA. Then L can be seen as an action of ker(f)
on the trivial line bundle on A. With a functorial point of view, we take a scheme T over k. Then
we have that a line bundle over BT which becomes trivial when pulled back on A × T is a morphism
ker(F )(T )→ Aut(A1

AT
) = O∗AT = O∗T .

So we summarize this discussion in the following:

Lemma 3.1.1. Ker(f)′(T ) = Hom(Ker(f)(T ),O∗T ) = { L ∈ Pic(BT ) such that f∗L ' OAT }

Remark. One should check that the morphism does not depend on the choice of the isomorphism. See
[MVdG13] Proposition 7.4.

Observe now what is Ker(f ′). For every scheme T over k, Ker(f ′)(T ) is a subset of B′(T ) =
Pic(BT )

π∗T (Pic(T )) . An element L in B′(T ) is in ker(f ′)(T ) if and only if it is equivalent to one such that f∗L

is equivalent to OAT , by the very de�nition of f ′. But every such L is uniquely represented by a line
bundle such that f∗L = OAT . Indeed, if L ∈ ker(f ′)(T ) then f∗L ' π∗TM for some M and hence
L′ = L ⊗ π∗TM−1 does the job. Conversely, if L1 = L2 ⊗ π∗TM and f∗L1 = f∗L2 then L1 = L2 since
π∗TM = OAT . So we have found:

Lemma 3.1.2. Ker(f ′)(T ) = { L ∈ Pic(YT ) such that f∗L ' OX }
In particular Ker(f ′) = Ker(f)′.

So we have made very explicit our perfect pairing Ker(f)×Ker(f ′)→ Gm. How does it works con
T point? Well, we take a couple (x, y). y is a line bundle such that f∗L = OAT and hence it is an action
of Ker(f)(T ) over the trivial line bundle and so it a morphism ψy : Ker(f)(T ) → Gm(T ). Then the
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pairing send (x, y) to ψy(x) = ef (x, y). Geometrically the action of x send (a, b, c) ∈ A × T × A1 to
(a+ x, b, ψy(x)c).
We are now ready to �nd some criterion to lift polarization. Consider the following diagram:

A×A′ A×B′ B ×B′f×Id
id×f ′

We have the Poincaré bundles PA and PB and we have that, by de�nition of f ′, (f × Id)∗PB ' (Id ×
f ′)∗PA := L in a canonical way. Then, since A × A′ = A×B′

{0}×Ker(f ′) , L has an action of {0} ×Ker(f ′).
We have L|A×Ker(f ′) = (Id× f ′)∗((PA)A×{0}) = OA×ker(f) in a natural way, see A.1.7. So the action of
q ∈ Ker(f ′) restricted to A ×Ker(f ′) is the trivial one, i.e on T point it send (x, y, z) to (x, y + q, z).
On the other hand, we have also an action of {0} × Ker(f) on L. And when we restrict this action
on A × Ker(f ′) we get, applying what said before with T = ker(f ′), that q ∈ Ker(f) send (x, y, z)
to (x + q, y, ef (x, y)a). In particular we get that the action of x ∈ Ker(f) and y ∈ Ker(f ′) commute
in A × Ker(f ′), and hence everywhere since the action can di�er just for a constant, if and only if
ef (x, y) = 1.

Proposition 3.1.3. Fix a polarization λ on A and an isogeny g : A→ C. Then there exists a polarization
η on C such that g∗η = λ if and only if ker(f) is contained in ker(λ) and ker(f) is totally isotropic for
the pairing associated to λ.

Proof. The proof is an application of the discussion above applied with B = A′ and f = λ. A polarization
is a line bundle of A×A and we want to know when it descend to a line bundle on C×C = A

ker(g)×
A

ker(g) .
The line bundle descent to C×C if and only if there is an action of ker(g)×ker(g). But this is made by
two compatible actions of 0× ker(f) and ker(f)× 0. As we said before the two actions are compatible
if and only if ker(g) is totally isotropic for the pairing.

Corollary 3.1.4. (Zarhin) A4 ×A′4 is principally polarized.

Proof. Suppose that λ : B → B′ is a polarization of an abelian variety and α an endomorphism of B.
Consider the isogeny f given by (x, y) 7→ (x − α(y), λ(y)) and observe that it has the same degree of λ
and that Ker(f) = {(α(y), y) | y ∈ Ker(λ)}. Observe that if the polarization λ× λ descend to B × B′
then it is principal by a degree computation. By the previous proposition, and unraveling the de�nition,
λ × λ descend if α(ker(λ)) ⊆ Ker(λ) and eλ(α(x), α(y))eλ(x, y) = 1 for every x, y ∈ Ker(λ). The
�rst condition is satis�ed if α ◦ λ = λ ◦ α and under this hypothesis the second condition is satis�ed if
eλ(x, (1 + α′α)(y)) = 1 for x, y ∈ Ker(λ), since

eλ(α(x), α(y)) = eλ◦α(x, α(y)) = eα◦λ(x, α(y)) = eλ(x, α′α(y))

.
Now take B = A4, choose m such that ker(λ) ⊆ A[m], write m − 1 = a2 + b2 + c2 + d2 thanks to the
Lagrange for squares theorem and consider the endomorphism

α =


a −b −c −d
b a d −c
c −d a b
d c −b a



Proposition 3.1.5 ([LOZ96]). The set of abelian sub varieties of A up to isomorphism is �nite

Proof. We prove something more general, namely that the set T of abelian sub varieties of A up to the
action of Aut(A) is �nite. De�ne V as set set of right ideals of End(A)⊗Q modulo the action of Aut(A).
We will construct an injective map T → V and then we will show that T is �nite.

• We de�ne the map T → V that send Y to I(Y )⊗Q where I(Y ) := {u ∈ End(A) such that u(A) ⊆
Y }. It is clearly well de�ned, and, to show that it is injective, suppose that I(Y )⊗Q = uI(Z)⊗Q
for some u ∈ Aut(A). Since uI(Z) = I(u(Z)) we can assume u = 1. Thanks to A.1.2 there exists
a W ⊆ A and an isogeny Y ×W → A, so that there exist a surjective map ψ : A → Y . This
implies ψ(A) = Y and hence ψ ∈ I(Y ) ⊗ Q = I(Z) ⊗ Q and hence there exists an n such that
nψ ∈ I(Z). Recalling that the multiplication by n is an isogeny we get Y = nY = nψ(A) ⊆ Z and
by a symmetric reasoning Z ⊆ Y .
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• We show something more general namely that if F is a semisimple �nite dimensional Q algebra, L
is a Z-lattice inside F , G is the set of automorphisms of F as F module, i.e. the invertible elements
of F , such that σ(L) = L, then the set of right ideals of F modulo the natural action of G is �nite.
Then we will apply F = End(A)⊗Q, L = End(A) and G = Aut(A)
Thanks to A.2.5 there exists a maximal orderM inside F . Then we can assume L is aM submodule
of F . Indeed if we de�ne L′ as the A submodule of F generated by L and G′ as the set of
automorphisms of F as F module, i.e. the invertible elements of F , such that σ(L′) = L′, we have
that L is of �nite index in L′ and hence G is of �nite index in G′. So for the �niteness statement
we can replace L with L′ and G with G′.
Now by A.2.4 there exists a �nite number of right M submodules of F such that their additive
group is isomorphic to Zt for every t and so there exists a �nite number of couple of A submodule
of F such that L1 ⊕ L2 ' L. Denote this last set set with W .
Now if N is a submodule of F , de�ne L1(N) = N ∩ L and L2(N) = L

L1
. By A.2.5 we have that

L ' L1(N)⊕ L2(N), so that we have a map V → H and we have just to show that it is injective.
But if L1(N) is isomorphic to L1(N ′) and L2(N) is isomorphic to L2(N ′) then, taking direct sum
we get an isomorphism L → L and so, tensoring with Q, an isomorphism σ : F → F such that
σ(L) = L and σ(N) = N ′

Corollary 3.1.6. When we prove (2) of 1.2.3 we can assume d = 1.

3.2 Theta groups

In this section we introduce the notion of Theta group. It will be helpful to understand how to
construct principal polarization over �nite extension of the ground �eld and also, in the next chapter,
to construct the moduli space of Abelian varieties. We �x a �eld k, an abelian variety with a separable
polarization L and we start with a de�nition.

De�nition 3.2.1. The theta group associated to L is the functor

G(L)(T ) := {(x, ψ) |x ∈ K(L)(T ) and ψ : L ' t∗xL}

The following are direct consequences of the de�nition.

Remark. a
1)G(L) is a group under the law (x, ψ)(y, η) := (x+ y, t∗yψ ◦ η)
2)We have an exact sequence of group functors:

0→ Gm → G(L)→ K(L)→ 0

where the �rst map send x in (0,mx), where mx is the �ber wise multiplication by x, and the second is
the natural projection (x, ψ) 7→ x
3)Gm is central in G(L)

If L is a line bundle, we denote with L the associated geometric line bundle and L∗ the associated
Gm torsor.

Proposition 3.2.2. G(L) is representable.

Proof. Since K(L) is representable we have just to show that the morphism G(L) → K(L) is repre-
sentable. So �x a scheme x : T → K(L) an de�ne M = LT ⊗ t∗xL−1

T . Using A.3.4 and the fact that
x factor trough K(L) we get that pT,∗M is locally free of rank one, so that we can consider M∗. For
every T scheme T ′, the G(L) point of T ′ that commutes with the map T → G(L), are exactly the non
vanishing section of MT ′ i.e the map from T ′ to M∗.

We are interested in G(L) thanks to the following

Proposition 3.2.3. Let H be a �nite subgroup of A and f : A→ B := A
Y . There is a bijection between

morphism of groups H → G(L) lying over the natural inclusion H → A and M ∈ Pic(B) such that
f∗M = L

Proof. It is enough to observe that, by de�nition, a morphism H → G(L) lying over the natural inclusion
is an action of H on L compatible with the natural action of H on A.
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With this we are ready to give a proof of the statement of our interest:

Theorem 3.2.4. Let K of characteristic zero. Every abelian variety is isogenous to a principally polar-
ized one over a �nite extension of k.

Remark. The characteristic zero assumption it is not needed, but makes the proof more elementary and
we will need this theorem only in this situation.

Proof. We can assume k = k. We take any ample line bundle L on A and a maximal isotropic, for
the pairing induced by the polarization, subspace H of L. By 3.1.3, the polarization induced by L
descend to a polarization λ of B = A

H , represented by some line bundle M , and, by maximality, there
aren't subgroup containing H with the same propriety. We claim that the λ is principal. Assume by
contradiction that K(M) is not trivial. Then, since we are working over an algebraically closed �eld
of characteristic zero, there is a subgroup of K(M) in the form Z

lZ for some prime l. Denoting with T
the pullback of G(M) along the inclusion Z

lZ → K(M), we get the following commutative diagram with
exact rows:

0 Gm G(M) K(M) 0

0 Gm T Z
lZ 0

Observe that T is commutative, since Gm is central commutative and Z
lZ is cyclic. Moreover Gm = k∗

is divisible and so the sequence split. So we get a map Z
lZ → T and hence a map H → G(M) lying over

the natural inclusion. But this means that we can lift the polarization to B
Z
lZ

and this is not possible by

construction.

Remark. With the same ideas one can prove that every abelian variety is isogenous, in a �nite extension,
to a one with a principal polarization given by an symmetric line bundle.

3.3 Rosati involution

De�nition 3.3.1. Given a polarized abelian variety (A, λ), we de�ne the Rosati involution

† : End(A)⊗Q→ End(A)⊗Q

as f† = λ−1f ′λ.

Proposition 3.3.2. Fix (A,ψL) with L ample. The Rosati symmetric bilinear form of End(A) ⊗ Q
associated to ψL, that maps (f, g) to Tr(f†g), is positive de�nite.

Proof. Denote Pff†(t) =
∑

0≤i≤2g ait
i the characteristic polynomial of ff†. We have to compute Tr(ff†)

and this is −a2g−1. Thanks to 2.0.1 we have that

Deg(ψf∗L−1⊗Ln) = χ(f∗L−1 ⊗ Ln)2 =
( (nc1(L)− c1(f∗L))g

g!

)2

=

=
(∑

0≤i≤g
(
g
i

)
(−1)g−i(c1(L)ic1(f∗L)g−i)

g!

)2

But we have also

Deg(ψf∗L−1⊗Ln) = Deg(nψL − ψf∗L) = Deg(ψLn− f ′ψLf) =

= Deg(ψLn− ψLf†f) = Deg(ψL)Deg(n− f†f)) = χ(L)2Pf†f (n)

. Comparing the coe�cient of the two polynomials we get

Tr(ff†) =
2χ(L)−2gc1(L)g(c1(L)g−1c1(f∗L))

(g!)2
=

2g(c1(L)g−1c1(f∗L))

c1(L)g

and this is positive since L is ample and f∗L is e�ective (f is a �at map on the image).
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Proposition 3.3.3. a
1)Aut((A, λ)) is �nite
2)Every element of Aut((A, λ)) that acts as the identity over the n > 2 torsion points is the identity.

Proof. 1) Observe that if α ∈ Aut((A, λ)) then α†α = 1 so that

α ∈ End(A) ∩ {β ∈ End(A)⊗ R | Tr(α†α) = 2g}

. The �rst is discrete and the second is compact thanks to 3.3.2 and so we are done.
2)Let α as in the statement. Then by the previous point it is of �nite order, so that its eigenvalues are
roots of unit. Moreover α− 1 = nβ and α is unipotent thanks to the following

Claim: if α is a root of unit, β an algebraic integer and α− 1 = nβ with n > 2 then α = 1.

Proof. If this is not true we can assume that α is a p root of unit with p prime (αm is a p-root of 1
di�erent from 1 for some m and then we get αm − 1 = (α− 1)c = nβc for some algebraic integer c). We
have

p = NQ(α)|Q(α− 1) = NQ(α)|Q(nβ) = np−1NQ(α)|Q(β)

and this is not possible if n > 2.

So α is unipotent and β is nilpotent. Now β1 = β†β 6= 0 thanks to 3.3.2. Moreover β1 = β†1 so that,
thanks to 3.3.2, β2

1 6= 0. Similarly β2m
1 6= 0 for every m and this is not possible since β is nilpotent.

All this lemmas are useful for the following corollary. Recall that, in the setting of 1.2.3, the all the
Bn have a polarization of degree d.

Corollary 3.3.4. Suppose that we have a family Bn of abelian variety isogenous to each other and with
a polarization λn of degree d. If they fall into �nitely many isomorphism classes as polarized abelian
variety over K then they fall into �nitely many classes as abelian varieties over K.

Proof. Suppose that we know that there exist �nitely many isomorphism classes as polarized abelian
variety in the algebraically closure. Then we choose some m > 2 coprime with the characteristic of the
�eld and a �nite extension F of K such that all the Bn have the m torsion points rational. We claim
that all of them are isomorphic over F . Indeed let α be an isomorphism over the algebraic closure of K.
Then, for every σ ∈ Gal(K|F ), σ(α) ◦ α−1 is the identity over the point of order m, since they are F
rational, and hence it it is the identity, by 3.3.3. So σα = α for all σ ∈ Gal(K|F ) and hence α is de�ned
over F . Now we can easily conclude showing that the map

{ polarized abelian variety over K up to iso} → { polarized abelian variety over F up to iso }

has �nite �ber. In fact the �ber of this map over an element (B, λ) is parametrized, thanks to A.1.17,
by H1(Gal(F |K), Aut((B, λ)) that is �nite, thanks to 3.3.3.

We will need another couple of properties of the Rosati involution. Denote with NS(A) = Pic(A)
Pic0(A) the

Neron-Severi group of A and observe that we have a canonical embedding NS(A)⊗Q→ Hom(A,A′)⊗Q
that send M to φM . Moreover, if ψL is a polarization of A, we have an isomorphism Hom(A,A′)⊗Q '
End(A)⊗Q that send f to φ−1

L ◦ f . So we get an injective map NS(A)⊗Q→ End(A)⊗Q that send
M to ψ−1

L ◦ ψM
Proposition 3.3.5. Let α be the image of some ample line bundle M . Then:
1)α is �xed by the Rosati involution induced by L.
2)Q(α) is a direct sum of totally real �eld.
3)If α is symmetric all the component of α in the previous decomposition are positive.

Proof. 1)This is clear since ψ−1
L (ψ−1

L ◦ ψM )′ψL = ψ−1
L ψM thanks to the fact that ψ′L = ψL.

2)Q(α) is a direct sum of �elds, since it is a commutative �nite dimensional algebra over Q. To show
that it is totally real observe that Q(α)⊗R ' Rr1 ×Cr2 and that every element in Q(α) is �xed by the
Rosati involution. By continuity, the trace bilinear form is positive semide�nite in Q(α)⊗R, and hence
positive de�nite since the quadric is de�ned over Q and hence the null space has to de�ne over Q. So we
get that if x ∈ Q(α)⊗R, Tr(x2) = Tr(xx†) > 0. But this implies that there are no complex embedding,
since if i2 = −1, Tr(i2) = −Tr(1) < 0.
3)Write the characteristic polynomial of α = ψ−1

L ◦ ψM as Pα =
∑

0≤i≤2g(−1)iait
i. We will show that
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ai > 0. Since all of its roots are real this is enough, thanks to the Descartes' sign rule. The reasoning is
similar to the one done in 3.3.2.
Indeed for every n we get:

χ(Ln ⊗M−1)2 = deg(ψLn⊗M−1) = deg(nψL − ψM ) =

= deg(ψL)deg(n− ψ−1
L ψM ) = deg(ψL)Pα(n)

Moreover Riemann Roch shows that

χ(Ln ⊗M−1) =
1

g!
((c1(Ln ⊗M−1)g) =

∑
0≤i≤g

(−1)v
c1(L)g−ic1(M)i

(g − i)!i!
ng−i

Comparing the coe�cient gives the assertion.
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Chapter 4

Proof over function �elds

The proof over function �eld is made in two steps. First of all we will prove the conjecture over
function �elds of degree of transcendence 1. Here the proof use the notions of height to prove the
�niteness statement. Indeed, we will construct a subspace of some Pn that parametrize abelian variety
with a �xed polarization. Then we will show that the height of the points in this projective space that
correspond to a family of abelian variety isogenous to each other is bounded, and hence we will get the
�niteness from A.3.2. To extend the result over arbitrary function �eld we will need some induction
argument on the transcendence degree of the function �eld.

4.1 Mumford moduli space

We give a sketch of the construction of the moduli space of Abelian variety over a �eld. We will
work with the moduli space of polarized abelian variety with a delta structure. We don't need the whole
construction of the moduli space, since we have just to deal with the k point of it. Also with these
restrictions the proof involves some long and hard computations on line bundles. We will present the
main ideas of the construction and some computations. For the complete proof we refer the reader to
[Mum66]. From now on we will assume that k is an algebraically closed �eld of characteristic di�erent
from 2 and we will deal with abelian variety with a �xed polarization of some degree d coprime with the
characteristic of the �eld.
The basic idea of the construction of Mumford is to construct, �xed an abelian variety A with very ample
line bundle L, a "canonical" basis of H0(A,L), so that we can embed A in a canonical way in Pn. Then
one shows that the equation de�ning A inside the projective space are uniquely determined by the image
of the neutral element of A in Pn. So, after �xing some extra structure, we can recover A as polarized
abelian variety from a unique point of Pn.
So �x an abelian variety A with a separable ample line bundle L. The perfect paring induced by L give
us a decomposition of K(L) as direct sum of two maximal isotropic orthogonal subgroup K1(L),K2(L),
where K1(L) is a maximal isotropic subspace. If d = (d1, ..., dn), with di|di+1 ∈ Z, we denote with
K(d) = ⊕1≤i≤n

Z
diZ and H(d) = K(d)⊕K(d)′. Recall that we have an exact sequence of groups:

0→ k∗ → G(L)→ K(L)→ 0

To put it in a canonical form, we de�ne G(d) := k∗ ×K(d) ×K(d)′ with the group structure given by
(x, y, z)(x′, y′, z′) = (xx′z′(y), y + y′, z + z′). We have an exact sequence

0→ k∗ → G(d)→ H(d)→ 0

De�nition 4.1.1. L is said to be of type d = (d1, ..., dn), if there exists an isomorphism K1(L) ' K(d).
A delta structure on (A,L) is the choice of an isomorphism between the two exact sequences that is the
identity over k∗.
A level subgroup of G(L) is a subgroup H such that H ∩ k∗ is zero.

Lemma 4.1.2. There is a bijection between level subgroups of G(L) and couples (f, α), where g : X → Y
is an isogeny and α is an isomorphism f∗M ' L where M ∈ Pic(Y )

Proof. This follows directly from 3.2.3.
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Lemma 4.1.3. The set of delta structure is non empty and �nite.

Proof. It is clear that it is �nite and that every line bundle has a type d, just choose a maximal isotropic
subgroup K1(L) of K(L). Choose an isomorphism K1(L) ' K(d) and observe that it induces an
isomorphism K2(L) ' K(d)′. If we choose level subgroups over K1(L) and over K2(L) (observe that
they exists thanks to 4.1.2 and 3.2.3), we can de�ne a map G(d)→ G(L) that it is the identity over k∗

and that gives us the desired isomorphism by the snake lemma.

The key idea of Mumford, that will allow us to chose a canonical basis of H0(A,L), is the following.

Proposition 4.1.4. • There is an unique irreducible representation V (d) of G(d) such that k∗ acts
as its natural character.

• Every other representation of G(d) in which k∗ acts in this way is isomorphic to V (d)r, where

r = dim(V K̃(d)).

• H0(A,L) is an irreducible representation of G(d)

Proof. • Suppose that V is an irreducible representation and consider K(d) as a subgroup of G(d).
Since K(d) is commutative and with cardinality not divisible by characteristic of the �eld we have
that

V = ⊕χ∈Hom(K(d),k∗)Vχ

as K representation, where Vχ is the subspace made by v ∈ V such that χ(k)v = kv for every
k ∈ K(d).
First of all observe that G(d)

k∗K(d) ' Hom(K(d), k∗). Indeed a simple computations show that, for

every y ∈ G(d), there exists a well de�ned character χy : K(d)→ k∗ such that χy(k)k = y−1ky for
every k ∈ K(d). Since k∗ is central andK is commutative, the homomorphism G(d)→ Hom(K, k∗)

that send y to χy gives us an injective map η : G(d)
k∗K → Hom(K, k∗) that is an isomorphism for

cardinality reasons.
Moreover one easily check that if v ∈ Vχ then yv is in Vχ∗χy for every y ∈ G(d). So we get that all
the Vχ are di�erent from zero, since at least one is di�erent from 0. If we �x a v ∈ V0, we get that
the subspace generated by yv, while y is varying, intersected with Vχ is one dimensional. Since the
representation is irreducible, all the Vχ are one dimensional.
We are ready to conclude. Indeed consider the subgroup H = k∗×K(d)′ and the representationW
which is k with the natural action of k∗ and the trivial action of K(d)′. Then we have a canonical
morphism IndHG (W ) → V , by the universal property of IndHG and the fact that k∗ acts as its
natural character over V . Since V0 6= 0, the morphism is non trivial. Since V is irreducible the
morphism is surjective and so we conclude counting dimension.

• Observe that the element such that xm = 1 form a �nite subgroup of G(m) of G(d), where
m = |K(d)|. Since k∗G(m) = G(d) a G(d) representation is semisimple if and only it is semisimple
as G(m) representation. Since char(k) does not divide m and G(m) is �nite, all the G(m) repre-
sentation are semisimple and so we are done. For the second statement it is enough to observe that
Dim(V (d)K) = Dim(V0) = 1 by the proof of the previous point.

• We have a natural action of G(L) given by (x, ψ)l = t−xψ(l) in which k∗ acts as it's natural
character. By the previous two points it is an irreducible representation of G(L).

So to construct a "canonical" basis of H0(A,L) it is enough to construct a canonical representation
V (d) of G(d) in which k∗ acts as the natural character with a canonical basis. Then by Schur's lemma,
there is a unique, up to scalar multiplication, equivariant isomorphism V (d) ' H0(A,L) and hence a
unique isomorphism P(H0(A,L)) ' P(V (d)). To construct such a representation de�ne

V (d) := {K(d)→ k}

, as the set of function from K(d) to k, and an action of G(d) on it as

(x, y, z)f(w) = xz(w)f(y + w)

Observe that we have a canonical basis of V (d) made by the function ea de�ned by, for every a, b ∈ K(d),
ea(b) = δa,b. By counting dimension this is irreducible by the previous theorem. So we have proven that
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if we have (A,L) and a delta structure we can construct a canonical map A → Pn where n = deg(L),
thanks to 2.0.1.

De�nition 4.1.5. Given (A,L) with a delta structure we de�ne the delta null coordinates {qL(a)}a∈K(d)

as the coordinates of the zero element of A in the previous embedding.

From now on suppose also that L is symmetric (this is not a big complication since we can change
L with L ⊗ (−1)∗L and observe that this is still separable since K(L ⊗ i∗L) = K(L2) (use that one
can write every line bundle as a product of a symmetric one and one in Pic0, see [MVdG13] Ex 7.3)).
Mumford proved the following:

Theorem 4.1.6. Suppose that A[4] ⊆ K(L). Then L is very ample and the equation de�ning A inside
Pn are quadratic polynomials with coe�cients that depends only on {qL(a)}a∈K(d). In particular the
isomorphism class of the polarized abelian variety depends only on the coordinates of the image in Pn of
the neutral element of A.

Proof. This is the main result of [Mum66].

Remark. Observe that also the restriction on the torsion is not a big problem. Indeed if we change L
with M = (L⊗ (−1)∗L)2 this will always be totally symmetric and A[4] will be included in K(M).

During the proof of the theorem Mumford proved also some useful relations that we will need in the
sequel.

Proposition 4.1.7. Let N be a subgroup of K(d) and suppose there is an isogeny f : A→ A
N and a line

bundle M such that f∗M = L. Then there exists a delta structure on (AN ,M) such that the delta null
values associated coincide with {qL(a)}a∈N⊥ .

Proof. See [Mum66] and [Zar73b]

Remark. Observe that the type of L2 is made by even numbers thanks to the fact that K(L) = 2K(L2)
and the Riemann Roch theorem.

Proposition 4.1.8. If (A,L2) is a symmetric separable polarized abelian variety with delta structure
K(2d) and Mumford coordinates (qL2(a))a∈K(2d). Then there exists a delta structure K(d) on (A,L)
such that K(d) ⊆ K(2d) in the natural way. Denote with K(2) the 2 torsion of K(2d) and of K(d).
Then we have the following formulas:
1)qL(x+ η) = 2−g

∑
l∈K(2)′ l(η)θL(x, l) where θL(x, l) =

∑
ω∈K(2) l(ω)qL2(x+ ω) and η in K(2).

2)qL(u+ v)qL(u− v) =
∑
η∈K(2) qL2(u+ η)qL2(v + η) if u, v ∈ K(2d) with u+ v ∈ K(d).

3)θL2(x, l)2 =
∑
η∈K(2) l(η)qL(2x+ η)ql(η)

4)qL(u)2 =
∑
η∈K(2) qL2(u+ η)qL2(η)

Proof. See [Mum66] Chapter 3 and [ZM72] last page.

Remark. Suppose that K is not algebraically closed. Passing on the algebraic closure we again �nd
a delta structure and hence some coordinates. Observe that this coordinates are de�ned over a �nite
extension of K such that the group scheme K(L) becomes constant.

4.2 The case of curves

The proof of Zarhin relies on the study of heights of families of isogenous abelian varieties. Suppose
that A is an Abelian variety over the function �eld of projective smooth curve over Fq. This is the case
every time K is a �nitely generated �eld over Fq with transcendence degree 1. Since it is a global �eld,
we have a notion of height in the projective space, see A.3.1, and hence, thanks to the previous section, of
height of a polarized abelian variety with a delta structure. Since it is of characteristic p every valuation
is non Archimedean. These are the two key points in the proof. As we will seen in a moment, the non
Archimedean property of the valuations will allow us to show that the height does not change under
isogeny and so to deduce the �niteness theorem from the Northcott's propriety of the height, A.3.2.
If A is an abelian variety with a polarization L of degree d we de�ne the delta height of A, d(A,L), as the
height of the delta null point of (A, (L⊗ i∗L)2) where we choose some delta structures onM = (L⊗ i∗L)2

and on M2 as in 4.1.8. We will change always change L with M , so that we will assume L symmetric
and A[4] ⊆ K(L). Moreover if we have some separable isogeny f : A → B and a line bundle such that
f∗N = L, we choose some delta structure on (B,M) as in 4.1.7.
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Remark. Di�erent choices of the delta structure does not change the height. Indeed a di�erent isomor-
phism between K(L) to K(d) can always be performed at the level of the some �nite extension of the
�nite base �eld. Since all the valuation are trivial on this �eld this isomorphism does not a�ect the
height.

We begin with the key lemma:

Lemma 4.2.1. a
1)d(A,L) = d(A,L2)
2)d(A,L) = h(qL(a))a∈K(2).

Proof. 1) For every valuation v We have

maxu∈K(d)(|qL(u)2|v) = maxu∈K(d)(|
∑

η∈K(2)

qL2(u+ η)qL2(η)|v) ≤

≤ maxu∈K(d)(maxη∈K(2)(|qL2(u+ η)qL2(η)|v)) ≤ maxu∈K(2d)|qL2(u)2|v
thanks to 4.1.8 and the fact that all the valuations are not Archimedean. As a consequence 2d(A,L) ≤
2d(A,L2). For the other inequality we have

maxu∈K(2d)(|qL2(u)2|v) ≤ maxx∈K(2d),l∈K(2)′(|θL2(x, l)2|v) =

= maxx∈K(2d),l∈K(2)′(|
∑

η∈K(2)

l(η)qL(2x+ η)ql(η)|v) ≤ maxx∈K(d)|qL(x)2|v

as before, noticing that l(η) has norm one since it is a roots of unit and that the �rst inequality follows
from the �rst point of 4.1.8. As a consequence 2d(A,L2) ≤ 2d(A,L) and we are done.
2)

(maxu∈K(d)(|qL(u)|v)2 = maxu∈K(d)(|qL(u)|v) ≤ maxu∈K(d),η∈K(2)(|qL2(u+η)|v)maxu∈K(d)(|qL2()|v) ≤

≤ maxu∈K(d),η∈K(2)(|qL2(u+ η)|v)maxu∈K(2d)(|qL2(u)|v)

But, thanks to the previous point, this implies that maxu∈K(d)(|qL(u)|v) = maxu∈K(2d)(|qL2(u)|v) ≤
maxu∈K(2)(|qL2(u)|v).

From now on the proof will be formal.

Proposition 4.2.2. a 1)If f : A→ B is a separable isogeny then d(A, f∗L) ≥ d(B,L)
2) If f : A→ B is a separable isogeny then d(A, f∗L) = d(B,L)
3) If L1 and L2 are two separable line bundles over A then d(A,L1) = d(A,L2)

Proof. Let N be the kernel of f .
1)Using 4.1.7 we get that set of coordinates of B in which we can compute the height of B is a subset of
the set of coordinates of A and so we are done.
2)Up to base change, that does not alter the height, every isogeny can be factorized as product of an
isogeny of degree 2n and an isogeny of odd degree.
If the degree of the isogeny is odd then, K(2) ⊆ N⊥ and hence we are done thanks to 4.1.7 and the
second point of the previous lemma. If the degree of the isogeny is 2n the we have a map g : B → A

such that f ◦ g = 2n. Then we get that, thanks to the �rst point of the proposition, that d(B,L2n
2

) =
d(B, (f ◦ g)∗(L) ≥ d(A, f∗L) ≥ d(B,L) hence we conclude thanks to the previous lemma that tell us
that d(B,L2n2

) = d(B,L).
3)We use again a sort of Zarhin trick to reduce this statement to the previous point. Consider the
embedding NS(X)⊗Q→ End(X)⊗Q as in 3.3.5 given by L2. L2 is sent to 1 and L1 is sent to some α
totally real and totally positive element in End(X)0. Using the previous point we can replace L1 with
Ln

2

1 for some n coprime with the characteristic of the �eld and hence we can assume that α ∈ End(A).
Now, in Q[α], the equation X2

1 +X2
2 +X2

3 +X2
4 = αX2

5 has a solution, since in has a solution in every
completion and it satis�es, as every quadratic, the Hasse principle (for the �nite places is clear, for
the in�nite place we have to use that the component of α are all positive). In particular the quadric
X2

1 +X2
2 +X2

3 +X2
4 = 4α is rational and so it satis�es weak approximation. Observe that, since p 6= 2,

it as also a Zp point namely (α + 1, u(α − 1), v(α − 1), 0), where u, v ∈ Zp are such that u2 + v2 = −1.
So in Qp[α] we have a solution such that p does not divide the denominator and hence, thanks to weak
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approximation, we get a solution in Q[α] with the same property. Multiplying this solution for a big N
coprime with p we can �nd a, b, c, d ∈ Z[α] such that a2 + b2 + c2 + d2 = N24α.
Consider now the endomorphism ψ of X4 given by the matrix:

M =


a −b −c −d
b a d −c
c −d a b
d c −b a


We have

M tM = N24αId = (2N)2αId

and hence ψ∗(⊗1≤i≤4π
∗
i L2) = (⊗1≤i≤4π

∗
i L1)(2N)2 = (2N)∗(⊗1≤i≤4π

∗
i L1) (see [MVdG13] ex. 7.8), up to

some element in Pic0(A) that does not alter the delta structure, and so we get what we want thanks to
the previous point and the additivity of the height with respect to tensor product of line bundle.

With this in our hand we can prove the �niteness statement

Theorem 4.2.3. (Zarhin) If K is a function �eld of transcendence degree equal to 1 over a �nite �eld
of characteristic p 6= 2, then the Tate conjecture is true for every abelian variety and every l di�erent
from p.

Proof. We will use the second point of 1.2.3. Thanks to 3.1.4 we can assume that A has a symmetric
polarization of degree d coprime with the characteristic of the �eld.
We choose an extension F such that a delta structure is de�ned for every abelian variety isogenous to A
with a polarization of degree d and the d torsion rational, using A.1.16. Now by the previous proposition
all of them have the same height and so they fall into �nitely many classes in the algebraic closure. So
by 3.3.4 they fall in to �nitely many isomorphism class over F . Now just observe that, as in the proof of
3.3.4 using A.1.17 and 3.3.3, this implies that they fall into �nitely many classes over K.

4.3 Reduction to the case of curves

4.3.1 Fullness

We will now extend the result to every function �eld with an induction argument. We will need the
following lemma of commutative algebra.

Lemma 4.3.1. Let R be a Dedekind domain, n ∈ N, I any set, N a �nitely generated R module,
{fi : Mi → N} a family of maps of R modules such that, for every i, coker(fi) is �at and F a �at
module. Then

(∩i∈IIm(fi))⊗ F = ∩i∈I(Im(fi)⊗ F )

Proof.

We have the following commutative diagram with all the map injective, thanks to the �atness of F

∩i∈IIm(fi))⊗ F ∩i∈I(Im(fi)⊗ F )

N ⊗ F

So we have just to show that ∩i∈I(Im(fi) ⊗ F ) ⊆ (∩i∈IIm(fi)) ⊗ F . To prove this is enough to prove
that there exists a �nite subset J ⊆ I such that ∩i∈IIm(fi) = ∩i∈JIm(fi). Indeed given this we get
that

∩i∈I(Im(fi)⊗ F ) ⊆ ∩i∈J(Im(fi)⊗ F ) = ∩i∈J(Im(fi))⊗ F = ∩i∈I(Im(fi))⊗ F

To prove the existence of such a J , we will show that the set of subset in the form ∩i∈JIm(fi) with
J �nite, satis�es the descending chain condition, this is enough thanks to Zorn Lemma. So consider a
descending chain ∩i∈JkIm(fi) with Jk ⊆ J �nite. Taking quotient, we get a sequence of surjective maps

...→ N

∩i∈JkIm(fi)
→ N

∩i∈Jk−1
Im(fi)

→ ...
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To conclude we observe that, since we are over a Dedekind domain and, by induction every N
∩i∈Jk Im(fi)

is torsion free and hence projective, this sequence stabilize (a surjective map between two projective
modules of the same rank is an isomorphism).

Remark. Suppose that (R,m) is a commutative henselian noetherian domain of dimension bigger then 2
and A a �nite unrami�ed cover. Suppose that there is a map f : A→ k(m) that factorize trough all the
ideals of height 1 of R. Then, since ∩ht(p)=1p = 0, Ap and k(m) are connected, f factorize trough R.

Now we can state the theorem

Theorem 4.3.2. Let R a normal noetherian domain of dimension bigger or equal to 2 such that:
1)the set C(R) := {char(Rp p ∈ Spec(R)} − {0} is �nite
2)for each prime p of height 1 the Tl is faithful for Frac(

R
p ).

3) the closed point with height bigger then 2 are dense in Spec(R)
Then for every abelian variety A over R, the Tate conjecture is true for AFrac(R) over Frac(R)

Corollary 4.3.3. Tl is faithful for every �nitely generated �eld K of characteristic p > 2.

Proof. Let A be an abelian variety over K.
Suppose that char(K) = p > 0 and the �nite base �eld is k. Then we have what we want by induction on
the transcendence degree of the �eld K over k and the Tate conjecture for function �eld of transcendence
degree 1 over k, observing that if R is a normal model of k over a �nite �eld such that the abelian variety
A extend to an abelian variety over R, then for every p ∈ Spec(R) of height 1, Tr.degreek(Frac(Rp )) =

dim((Rp ) ≤ dim(R)−1 = Tr.degreek(Frac(R))−1. Observe that the third hypothesis is clearly satis�es
since the closed point are dense and all of the maximal height.

Now we prove the theorem. We denote with (H,mH) the strict henselianization of (R)y where y is a
closed point of maximal height of Spec(R). We de�ne the following set:

M =

{
(S,mS) where H ⊆ S ⊆ K, H is a strictly henselian ring and

mS , the maximal ideal of S, is such that pS := mS ∩H has height one.

}
Denoting with kS the residue �eld of S, we de�ne also the obvious maps, for every S, as in the following
commutative diagram:

kH
H
pS

H K

kS S

rS

π H
pS

πSH
jS

πH

iH

πS

iS

Moreover we de�ne GS = {g ∈ G such that g(S) = S} and qS = R ∩ mS . Finally we de�ne for every
map f : X → Y of R algebras, the map EAl(f) : End(AX)→ End(AY ). Observe that the Tate module
of all this scheme are isomorphic and in the sequel, to simplify the notation we will identify all of them
and they endomorphism algebra. For a proof without any identi�cation see B.0.1.

We start observing that, to prove the Tate conjecture, it is enough to prove that EndΓK (Tl(AK) ⊆
End(AK) ⊗ Zl, since if we know this we get EndΓK (Tl(AK)) = End(AK) ⊗ Zl ∩ EndΓK (Tl(AK)) but
End(AK)⊗ Zl ∩EndΓK (Tl(AK)) = End(AK)⊗ Zl, observing that only morphism that are �xed by the
Galois are the one de�ned over K.

We start with an element x ∈ EndΓK (Tl(AK)). Since the action of GS on Tl(k) is compatible with
the map πS and iS , we get that x ∈ EndGS (Tl(AK)) for every S. Now we observe that the natural map
GS → ΓFrac( RqS ) is surjective, so that x ∈ EndΓ

Frac( R
qS

))
(Tl(AK) for every S. By hypothesis we have

that there exists a f ∈ End(AFrac( RqS ))⊗Zl such that Tl(f) = x. Now we will show that this f is in the

image of EA(πH)⊗ Zl. We have:

Lemma 4.3.4. Suppose that H → H ′ is an injective map between two strictly henselian Ry domains.
Then map End(AH)→ End(A′H) is bijective.

Proof. Since the two Tate module are isomorphic and the map End(AH)→ Tl(AH) is injective, we get
that the map End(AH) → End(A′H) is injective. If End(AH |H) is the �nite unrami�ed scheme that
parametrize the endomorphism of AH we get the following commutative diagram:
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End(AH |H)H′ End(AH |H)

Spec(H ′) Spec(H)

An element in End(AH′) is a map Spec(H ′)→ End(AH) and hence, since End(AH |H) is a �nite disjoint
union of scheme of the form Spec(HI for some I ideal of H, and H ′ is connected, it is a map H

I → H ′ for
some ideal I of H. But since the map H → H ′ is injective we get that I = 0 and hence it comes from a
section Spec(H)→ End(AH |H).

Thanks to this we get that f ∈ ∩S∈M (Im(EA(π H
pS

))⊗ Zl). The key lemma is the following:

Lemma 4.3.5. a
1)We can choose a closed point y ∈ Spec(R) of height bigger then 2 such that

∩S∈M (Im(EA(π H
pS

))⊗ Zl) = (∩S∈MIm(EA(π H
pS

)))⊗ Zl

2)Im(EA(πH)) = ∩S∈MIm(EA(π H
pS

))

Proof. 1)Using 4.3.1 we just need to �nd a y such that coker(Im(EA(π H
pS

))) is torsion free for every s.

Suppose mg = EA((π H
pS

))(f), for some g ∈ End(AkH ), f ∈ End(A H
pS

) and m ∈ N. We can assume m

prime and we divide two cases: m ∈ C(R) or m 6∈ C(R).
If m 6∈ C(R) then A H

pS

[m] and AkH [m] are étale , so that, since f is zero in AkH [m] it is zero in A H
pS

[m],

since taking special �ber is an equivalence of categories. So we get that f ∈ mEnd(A H
pS

) and we are

done. If m ∈ C(R) the situation is more complicated, because we don't know if A H
pS

[m] is étale . The

key to avoid the problem is the following:

Claim: For every prime p, there exists an open dense subset V of Spec(R), an integer n and a �nite
subscheme E of End(XV [p]|V ) such the morphism End(XV [pn]|V )→ End(XV [p]|V ) factors though E
and the diagonal morphism E → E ×V E induce an homeomorphism of E into an open and closed

subscheme of E ×V E.

Proof. It is enough to prove that over the generic �ber there exists a �nite group scheme E and a natural
number n such that the morphism

End(AK [pn]|K)→ End(AK [p]|K)

factors trough a �nite group scheme over K. Indeed if we have this we can �nd an open subset with
all the proprieties required except for the condition on the diagonal. But now observe that the diagonal
induces an homeomorphism into an open an closed subset on the generic �ber, since it is true when we
take the reduced part (they are just disjoint union of point). For this, since the image of the morphism
and �niteness condition are stable by base change, we can assume K algebraically closed. Then it
is enough to show that End(A[pn]) → End(AK [p]) is �nite for some n. Now observe that for n big
enough, Im(lim←−iEnd(A[pi]) → End(A[p])) = Im(End(A[pn]) → End(A[p])). Indeed, for sure we have
that Im(End(A[pn]) → End(A[p])) ⊆ Im(End(A[pn]) → End(A[p])) and the set of image satis�es the
descending chain condition, since they are the K points of closed subscheme of a noetherian scheme. But
now observe that lim←−iEnd(A[pi]) = End(A[p∞]) and this is �nitely generated.

With this in our end we choose a closed point y ∈ ∩m∈C(R)Vm of height bigger then 2, where Vm is
the open subset of the claim relative to m. We have to show that f is zero on A H

pS

[m] knowing that it

is zero on AkH [m]. Then we have the following commutative diagram, where ∆ is the diagonal:

E H
pS

× E H
pS

EkH × EkH

∆E H
pS

∆EkH

Spec( HpS ) Spec(kH)
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Now f × ε, where ε is the zero section, restricted to A H
pS

[m] is the dotted morphism on the left. Since f

is zero after the base change with kH the dotted morphism on the left factors trough the diagonal. Since
the diagram is commutative and the diagonal is open, also the morphism on the right factor trough the
diagonal. Since H

pS
is reduced, this is enough to conclude.

2)This is clear by 4.3.1, since the dimension of Ry, and hence of H, by [Sta16], Lemma 15.36.7. , is
bigger or equal of 2 by hypothesis and the endomorphism of AH are classi�ed by a �nite étale scheme
over H.

With this we get that f ∈ Im(EA(πH)) ⊗ Zl. Now using again lemma 4.3.4, we �nd that f comes
from an element in End(AK)⊗ Zl and this conclude the proof.

4.3.2 Semi-simplicity

To prove semi-simplicity we will follow a specialization argument, based on a classical argument of
Serre. The setting is the following. We have an abelian variety A of dimension g over a noetherian
normal curve scheme over a �eld k, with generic �ber K, and we know that for every k-point s of R
the induced representation of π1(k(s)) over As is semisimple. We want to show that the representation
induced on the generic �ber is semisimple. Recall that the map π1(K) → π1(R) is surjective, since it
is the projection from π1(K) to the Galois of the maximal unrami�ed extension of R. Denoting with
ΠA the image of the representation induced on the fundamental group of some R algebra A we get the
following commutative diagram:

π1(k(s)) π1(R) π1(K)

Πk(s) ΠR ΠK

GL2g(Ql)

ρs ρR

'

So if we can �nd some s ∈ Spec(R) such that the map Πk(s) → ΠR is surjective we are done. To do this
it's useful to recall the following, where we denote with Φ(G) the Frattini subgroup of any topological
group G:

Lemma 4.3.6. a
1)A map between pro�nite group f : G→ H is surjective if and only if the map G→ H

Φ(H) is surjective.

2)Φ(ΠR) is open is ΠR.

Proof. 1)The image is contained in a maximal open subgroup M . Since the map is surjective on the
quotient for the Frattini subgroup, MΦ(H) = H. But Φ(H) ⊆M so that M = H.
2)This follows from the fact that the image is is a compact l-adic Lie group, thanks to Cartan's theorem.
But in any compact l-adic Lie group the Frattini is open, see [Ser97b], Page 148-149.

Thanks to the previous lemma ρ−1(Φ(ΠR)) is open and hence it gives us an Galois étale cover X → S

with Gal(X,S) = Π1(R)
ρ−1(Φ(ΠR)) , where S = Spec(R). Always thanks to the previous lemma, we just need

to �nd an s ∈ S such that the map π1(s) → ΠR
Φ(ΠR) is surjective. What is the image of π1(s) → π1(S)?

In general it is not clear, but for our purposes it is enough the following

Lemma 4.3.7. π1(s) is contained in an open subgroup V of π(S) if and only if the map k(s) → S lift
to a S-map k(s)→ XV where XV is the covering associated to V .

Proof. If there exists the lifting then we are done thanks to the following commutative diagram:

π1(XV )

π1(s) π1(S)

For the other implication observe that the connected components of the �ber over k(s) are in bijection
with the orbit of the action of π(s) over π1(S)

π1(XV ) and the degree of a component is the cardinality of the
orbit. Since π1(s) ⊆ π(XV ) we get that there exists at least one orbit with one element.
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In particular we just need to �nd a rational point s such that for every covering XU that correspond
to an open subgroup of π1(S) containing ρ−1(Φ(ΠR)), i.e to a covering between X and S, s does not lift
to a k(s)- rational point of XU . It is not totally clear that this exists and to construct one we have to
work a bit. First of all we take any étale covering f : S → U , where U is an open subset of some Pn
and up to replace S with a non empty open subscheme. X is also a covering of U and we take its Galois
closure X̂. For every u ∈ U and s ∈ f−1(u) we get the following commutative diagram.

π1(s) π1(S) Π

π1(u) π1(U)

Gal(X̂|U) Gal(X̂|S) Gal(X|S) = π1(S)
ρ−1(Φ(ΠR))

Π
Φ(Π)

We de�ne U ′ = U(k) − ∪MpM ( X̂M (k)) where M is varying over the proper subgroup of Gal(X̂|S) and

pM : X̂
M → U . Thanks to the previous discussion, if we show that U ′ is non empty we won, since then

we can take any u ∈ U ′(k) and any s ∈ f−1(u) so that, by construction, s does not lift to any rational

point of X̂
M .

To prove this we introduce, following Serre, the notion of thin set.

De�nition 4.3.8. If k is a �eld, we say that a subset A of Pn(k) is thin if there exists an algebraic
variety X, with a morphism without rational section and �nite generic �ber π : X → Pn such that
A ⊆ π(X(k)).
We say that a �eld is Hilbertian if it Pn(k) is not thin for every n ∈ N .

So to conclude the proof it is enough to show that if k is a function �eld over a �nite �eld then it is
Hilbertian.

Remark. [Ser97b], Page 121. 1)Every �nite union of thin set is a thin set.
2)If a �eld k is Hilbertian then k∗

(k∗)n is in�nite.
3)Every thin set is contained in a union of set in the following form:
-f(X(k), whereX → Pn is a dominant morphism of degree bigger of 2 andX is a geometrically irreducible
algebraic k-variety
-i(X(k)), where i : X → Pn is the inclusion of a sub variety.

Lemma 4.3.9. An in�nite �eld is Hilbertian if and only if P1(k) is not thin.

Proof. Suppose that Pn(k) is thin for some n. We can assume that there is an geometrically irreducible
variety X → Pn such that the map is surjective on the k points. Then we have that for all the line
L ⊆ Pn the base change map XL → L is surjective on k points. But, via Bertini theorem ([Jou83],
Theorem 6.10), we can choose a line such that XL is geometrically irreducible so that P1(k) is thin.

Lemma 4.3.10. 1) For every �eld and every transcendental element t, k(t) is Hilbertian.
2)A �nite extension L of an Hilbertian �eld K is Hilbertian.

Proof. 1)This can be proved in a number of di�erent ways. We will give a non elementary proof that is
based on some strong version of the Bertini theorem.

• Suppose �rst that k is in�nite. If k(t) is thin there exist �nitely many π(Xi(k(t))) such that all but
�nitely many elements in k(t) are contained in their union Ω. Observe that, since A1

k(t) → A2
k is

birational, these morphisms extend to dominant maps Yi → A2
k, with Yi is geometrically irreducible,

since the set of point such that Yi is geometrically irreducible is constructible and contains the
generic point. Using Bertini theorem, see [Jou83] Theorem 6.3.4, there exists an open subset Ui of
A2 such that Yi × La,b is geometrically irreducible for every (a, b) ∈ Ui(k), where La,b is the line
at+ b.
In particular at+ b does not lift to a k(t) rational point on X, since Yi is geometrically irreducible
and hence at+ b 6∈ πi(Xi(K(t))). Hence λ ∩ k × k ⊆ ∪i(A2 − Ui)(k)) but k × k − ∪i(A2 − Ui)(k))
is in�nite, a contradiction.
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• Assume now that k is �nite. If we denote with Hd the set of degree d hypersurfaces of A2
k and with

Sd the subset of Hd made by the H such that Yi ×H is irreducible, we have, by [CB16] Corollary
1.7, that

Limd 7→+∞
|Sd|
|Hd|

= a > 0

. Reasoning as before, we get that Ω ∩Hd ⊆ Hd − Sd and hence that

Limsupd7→+∞
Hd ∩ Λ

Hd
≤ 1− a < 1

. But as k(t) = ∪dHd and k(t)− Λ is �nite we should have

limd7→+∞
Hd ∩ Λ

Hd
= 1

.

2)Suppose An(L) is thin, i.e that there exists a morphism X → AnL over L, such that An(L) =
π(X(L)), where X is an algebraic variety that we can assume a�ne. Then we apply the functor ResL/K
to get a morphism ResL/K(X) → ResL/K(AnL). Moreover we have the counit AnK → ResL/K(AnL) =
ResL/K(AnK ⊗ L) that on K point is just the natural inclusion of Kn in Ln. Consider the following
Cartesian diagram:

Y ResL/K(X)

Ank ResL/K(AnL)

f

Observe that f(Y (K)) = An(K) so that to conclude we have only to show that f has no rational section.
But if f has a rational section s the universal property of Res would give us a rational section of π and
this is not possible by assumption.

This last lemma and the work done in the previous sections give us:

Theorem 4.3.11. The Tate conjecture it true for every function �eld of positive characteristic di�erent
from 2.

Remark. Using a result of Deligne, the homotopy exact sequence for the fundamental group and some
properties of algebraic groups, is possible to reduce the semisimplicity even to �nite �eld k. Indeed
suppose A is an abelian variety over a normal geometrically connected curve X de�ned over k and
choose a point x of the curve de�ned over the k. Then we have an exact sequence:

0→ π1(Xk)→ π1(X)→ π1(x) = Γk → 0

Then the action of the last one on the Tate module of A is semisimple, thanks to the Tate conjecture
over �nite �elds. The result of Deligne, [Del80] Corollary 3.4.13, tells us that also the action of π1(Xk)
is semisimple, and hence we get semisimplicity of the action of π1(X).
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Chapter 5

Proof over number �elds

The proof over number �elds is similar in the spirit to the one over function �elds, but the Diophantine
step is more involved. The key problem is the presence of Archimedean valuations, that does not make
possible the prove directly the boundedness of the height of a family of isogenous abelian varieties. To
prove this boundedness we introduce another notion of height, the Faltings height, that takes care also
of the in�nite valuations. The �rst two sections are devoted to de�ne and prove boundedness of this
height. Next, using some Arkelov geometry, we will show that the boundedness of this height implies
the one of the delta height.

5.1 Behavior of the Faltings height under l power isogenies

The aim of the following two sections is to prove the following theorem:

Theorem 5.1.1. Let K be a number �eld, A an abelian variety over K with semistable reduction and
G a sub l-divisible group of A[l∞]. De�ne Bn := A

Gn
and let h(Bn) be the Faltings heights of Bn. Then

the set {hF (Bn)} is �nite.

The proof relies in a careful study of the kernel of the isogenies A→ Bn and some results about the
representation Tl(G).
For all this section K is a number �eld, OK its ring of integer, v is a (�nite) prime over l, A an abelian
variety over K of dimension g with semistable reduction, G a sub l-divisible group of A[l∞], of height h,
and Bn := A

Gn
. Moreover let A be the connected component of the Neron model of A

De�nition 5.1.2. We de�ne the Faltings heights of A as

hF (A) :=
1

[K : Q]

(
log
(∣∣∣ s∗ΩgA/OK
ωs∗ΩgA/OK

∣∣∣)+
∑

i:K→C
log
(∣∣ ∫

i(A)(C)

ω ∧ ω
∣∣−1))

where ω ∈ ΩgA/OK is any non zero element.

Remark. 1)Using the product formula and the fact that
∣∣∣ s∗ΩgA/OKωs∗ΩgA/OK

∣∣∣ =
∑
v

∣∣∣ s∗ΩgAv/OK,vωs∗ΩgAv/OK,v

∣∣∣ one shows that
the Faltings height does not depend on the choice of ω.
2)If A has semistable reduction the Faltings height is stable by �nite base change thanks to A.1.34 and
the factor 1

[K:Q] .

3)If s∗ΩgA/OK is principal then

hF (A) =
1

[K : Q]

( ∑
i:K→C

log
(∣∣ ∫

i(A)(C)

ω ∧ ω
∣∣−1))

where ω ∈ ΩgA/OK is any generator of the module.

Denote with ψn the isogeny A → Bn of degree lnh. We have an exact sequence 0 → Gn → A →
Bn → 0 over K so that, over OK we have 0→ Gn → A→ Bn → 0, where Gn is a quasi-�nite �at group
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scheme, just looking at each �ber. We want to understand hF (A)− hF (Bn) and we start observing that
ψ∗ωBn = aωA for some a in OK . Now we compute:

hF (A)− hF (Bn) =
1

[K : Q]

∑
i:K→C

log(
|
∫
i(A)(C)

ωA ∧ ωA|−1)

|
∫
Bn(C)

ωBn ∧ ωBn |−1)
=

=
1

[K : Q]

∑
i:K→C

log(
|
∫
C/ΛA ωA ∧ ωA|

−1)

|
∫
C/ΛBn

ωi(Bn) ∧ ωBn |−1)
=

1

[K : Q]

∑
i:K→C

log(
i(a)i(a)|

∫
C/ΛA ωA ∧ ωA|

−1)

Deg(ψn)|
∫
C/ΛA)

ωA ∧ ωA|−1)
=

=
1

[K : Q]

∑
i:K→C

log(i(a)i(a))− 1

[K : Q]

∑
i:K→C

log(Deg(ψn)) =

=
2

[K : Q]
log(|NK(a)|)− log(Deg(ψn))

where i(A)(C) = C/ΛA, the same for Bn and we have used the formula for changing variables in the
integral and the fact that ψn identi�es ΛA with a sub lattice of ΛBn , see A.1.1.

So we have that h(Bn) = h(A) if and only if, remembering that deg(ψn) = lnh, l
hn[K:Q]

2 = |OK/aOK |.
Then we note that OK/aOK is the coker of the map s∗ΩgBn/OK → s∗ΩgA/OK , i.e s

∗ΩgA/Bn . Moreover
observe that, denoting with in the inclusion Gn → A and observing that Gn is the base change of A → B
along the zero section, s∗ΩA/B ' s∗i∗nΩA/B ' s∗ΩG/OK so that s∗ΩA/B is torsion and �nitely generated
and hence, it is isomorphic to ⊕p∈Spec(Ok)(s

∗ΩA/B)p. A simple computation, using the fact that on every
localization of a Dedekind domain we can diagonalize matrix, shows that

|coker(s∗ΩgBn/OK → s∗ΩgA/OK )| = |coker(s∗ΩBn/OK → s∗ΩA/OK | = |s
∗ΩA/Bn | = |s

∗ΩGn/OK |

In conclusion we have shown the following:

h(A) = h(Bn) if and only if l
hn[K:Q]

2 = |s∗ΩGn/OK |

Since s∗ΩGn,v/OK is killed by a power of l its support is contained in the prime over l and hence, since
it is �nite, s∗ΩGn,v/OK '

∏
v|l s

∗ΩGn,v/OKv where OKv is the completion at v. Now OKv is a complete

DVR and Gv is quasi �nite, so that, thanks to A.4.4, Gn,v ' Gfn,v
∐
Gηn,v where the �rst factor it is a

(universal) �nite group scheme over OKv . Since h : Gfn,v → Gn,v is a group map and an open immersion,
s∗ΩGn,v/OKv ' s

∗h∗ΩGn,v/OKv ' s
∗ΩGfn,v/OKv

so that |s∗ΩGn,v/OKv | = |s
∗ΩGfn,v/OKv

|.
The natural question now is if the family Gfn,v form a l-divisible group over OKv . In general the answer
is no, but the next lemma shows that is true up to replacing A with some Bn.

Lemma 5.1.3. There exists an N >> 0 such that
Gn+N,v

GN,v for an l divisible group.

Proof. Observe that the generic �ber of GN,v form an l-divisible group. This follows from the fact that the
intersection of l-divisible group is l-divisible over an a characteristic zero �eld, because the intersection
of Zp ΓK invariant modules is a Zp ΓK invariant module, and from the equality Gfn,v = Gfn,v ∩ Av[ln].
To justify this equality, we observe that just by functoriality we have the inclusion from the left to the
right and we have just to check that they have the same special �ber (and this is clear since only the
�nite part persist) and the same generic �ber. For the last, one check that they have the same K ′ point
for every �nite extension of K by the �niteness of Gfn,v.
Now the lemma follows from the following:

Claim If the generic �ber of a family of �nite �at groups Gn → Gn+1 form an l-divisible group over a
discrete valuation ring R with fraction �eld K, then there exists an N >> 0 such that Gn+N

GN
form an

l-divisible group.

Proof. Observe that Gi+1/Gi is �nite, �at and killed by p (since the map induced on the Hom on
the generic �ber is injective) so that we have an homomorphism Gi+2/Gi+1 → Gi+1/Gi that it is an
isomorphism on the generic �ber. Thanks to this we have that the family Gi+1/Gi is a increasing chain
inside the �nite algebra G1⊗K . Since the integral closure of R inside the above algebra is noetherian,
there exists an N such that Gi+1/Gi is an isomorphism for all i > N . We claim that this N works i.e
that G′n = GN+n/GN form an l-divisible group with the natural inclusion map. We have the following
commutative diagram:
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GN+v+1/GN GN+v+1/GN

GN+v+1/GN+v GN+1/GN

pv

α

β

γ

where β is induced by the multiplication by pv and it is an isomorphism. Then, since γ it is a closed
immersion, Ker(pv) = Ker(α) = GN+v/GN and hence we are done.

So, up to replacing A with BN , we can assume that Gfn,v is a l-divisible group. Observe that we have
the exact sequence 0 → (Gfn,v)0 → Gfn,v → (Gfn,v)ét → 0, where the �rst map it is an open immersion of
group scheme. Reasoning as before we get that s∗ΩGfn,v/OKv ' s∗Ω(Gfn,v)0/OKv

. But this is computable!

In fact observe that f G0
v,n = Spec(Av,n) then Av,n is a connected �nite algebra over OK,v and hence it is

generated by an algebraic element α with minimum polynomial f (tensoring with the residue �eld leaves
Av,n connected so that the tensor is generated by an element and hence (Nakayama) Av,n is generated
by an element). So we get that ΩAv,n/OK,v '

Av,n
f ′(α) . But ΩAv,n/OK,v ' s∗Ω(Gfn,v)0/OKv

⊗OK Av,n, thanks

to A.1.15, and Av,n is free of rank Rank((Gfn,v)0) so that |s∗Ω(Gfn,v)0/OKv
|

1

Rank((Gfn,v)0) = | Av,nf ′(α) |. But

| Av,nf ′(α) | = |
OK,v

NK(f ′(α)) | = |
OK,v

DiscOK,v ((Gfn,v)0)
|.

To resume, we are reduced to show that

l
hn[K:Q]

2 =
∏
v|l

∣∣∣∣∣ OK,v
DiscOK,v ((Gfn,v)0)

∣∣∣∣∣
1

Rank(G0v,n)

For this we have the following result of Tate, remembering that we can assume that the Gfn,v form an
l-divisible group.

Proposition 5.1.4. If G is a p-divisible group of height h and with associated formal group of dimension
n then Disc(Gv) = (pnvRank(Gv))

Proof. See [Lie00] Prop 6.2.12

So we get∏
v|l

| OK,v
Disc(Gfn,v)0)

|
1

Rank((Gfn,v)0)) =
∏
v|l

| OK,v
(ldvnRank((Gfn,v)0))

)|
1

Rank((Gfn,v)0)) =
∏
v|l

ldvn[Kv:Ql]

where dv is the dimension of the formal group associated to the l divisible group (Gfn,v)0. So we are left
to show that ∑

dv[Kv : Ql] =
1

2
h[K : Q]

.
The insight of Faltings is that this two numbers are the Hodge-Tate weight of the same character, see
A.4.6. De�ne W = Tl(G) and V = IndΓK

ΓQ
(W ). We will �rst show that Det(V )|Ql is Hodge-Tate of

weight
∑
dv[Kv : Ql] and then that it is Hodge-Tate of weight 1

2h[K : Q].

First of all, observe that V|Ql = (IndΓK
ΓQ

(W ))|Ql = ⊕s∈ΓQl\ΓQ/ΓK Ind
(ΓK)s
ΓQ

(Ws), thanks to A.4.7, where
(ΓK)s is sΓKs−1∩ΓQl andWs is the representation of (ΓK)s given by p(x) = p(s−1xs). Since K is Galois
we get V|Ql = ⊕s∈ΓQl\ΓQ/ΓK Ind

ΓKv
ΓQl

(Ws) for some v over l. Since ΓQl\ΓQ/ΓK is the set of embedding

of K in Ql, i.e the set of primes v over l, we get that V|Ql = ⊕v|lInd
ΓKv
ΓQl

(W|Kv ). So Det(V|Ql) =

⊗v|lDet(Ind
ΓKv
ΓQl

(W|Kv )). Observe that over a su�ciently big �nite extension this representations are

isomorphic to Det(W|Kv )[Kv:Ql]. Since the Hodge-Tate propriety is insensitive of �nite extension, A.4.6,
we get that Det(V|Ql) is Hodge-Tate of weight

∑
dv[Kv : Ql] thanks to the following (highly non trivial)

theorem, that we will prove in the next section:

Theorem 5.1.5. Det(W|Kv ) is Hodge-Tate dv.
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Now that we know that Det(V ) is hodge of some weight d at l we can do another computation.
Observe that this representation is an l-adic character χ of (ΓQ)ab unrami�ed outside �nitely many
primes. De�ne χ0 = χ−dl χ where χl is the cyclotomic character.
Then χ0 is of �nite order. In fact, thanks to Kronecker-Weber theorem, (ΓQ)ab '

∏
p Z∗p where each Zp is

the inertia group at p. Since χ is unrami�ed at almost every prime, χ0 is a map Z∗p1 , ...,×Z
∗
pn×Z∗l → Z∗l .

Observe that each Z∗pi has �nite image (in fact it isomorphic to F × Zp with F �nite and so in it trivial
outside a �nite set). Moreover since χ0 is Hodge-Tate of weight 0 at l also Z∗l has �nite image since it is
the inertia group at l (see A.4.6).
So we can write χ = χdl χ0 with χ0 of �nite order. Then observe that for some Frobenius |χ(Fp)| =
|χdl (Fp)| = pd. But, thanks to Weil conjectures A.4.8, the eigenvalue of the Frobenius acting on Vl(A)
and hence on Vl(W ) have complex absolute value p1/2. But this are the same eigenvalue (choosing a
Frobenius in ΓK at same place of good reduction) of V . So the complex absolute value of the character
of Det(V ) at this Frobenius is p[K:Q]h/2, since V is a representation of dimension mh.

5.2 Det(W|Kv
) is Hodge-Tate of weight dv

In this section we will proof 5.1.5. The theorem is corollary of the following two theorems.

Theorem 5.2.1 (Hodge-Tate decomposition). [Tat67] Let K be a p-adic �eld, G a p-divisible group
over OK , tG the tangent space of the formal group associated to it with dual t∗G and tG(CK) = tG⊗CK .
Then Hom(T (G),CK) ' t′G(CK)⊕ tG(CK)(−1) and so, taking duals, T (G) ' tG(CK)(1)⊕ t ∗G′ (CK)

Theorem 5.2.2 (Orthogonality theorem). With the same notation of the previous theorem assume
further that G is the p-divisible group of the p torsion of a semistable abelian variety. Then, denoting

Tl(G)f the p divisible group associated to the �nite part of G, Tl(G)
Tl(G)f

is an unrami�ed representation of

ΓK .

Proof. of thm 5.1.5.
We have an exact sequence, where Wf ⊆ W is the submodule induced by the �nite part of G, 0 →
Wf → W → W

Wf
→ 0 and hence an isomorphism Det(W )|Ql ' Det(Wf )|Ql ⊗Det( WWf

)|Ql . Now Wf is a
representation coming from a l-divisible group of OK,v and so, by 5.2.1, Det(Wf )|Ql it is Hodge-Tate of
weight dv. To conclude, we observe that, by 5.2.2, Det( WWf

)|Ql is unrami�ed and hence, thanks to A.4.6,
it is Hodge-Tate of weight 0.

5.2.1 Hodge-Tate decomposition

We start working over a p-adic �eld K, with ring of integers OK , absolute Galois group ΓK and we �x
a p-divisible group G over OK , with dual G′. The aim of this section is to show that Hom(T (G),CK) '
tG(CK) ⊕ t∗G′(CK)(−1) as Galois module. Let D ∈ {K,CK}. We will denote mD the maximal ideal of
D and UD = 1 + mD. We start observing the following dualities:

• Φ(G) ' Hom(T (G′), µp∞)

• T (G) ' Hom(T (G),Zp(1))

• T (G′) ' HomD(GD,Gm(p)) where GD is the base change of G on D and the Hom are the
homomorphism as p-divisible group

Observe that the second duality give us for every element of T (G′) a family of maps ψv,B : Gv(B) →
Gm(p)v(B) = µpv (B) where v is an integer and B is a D algebra. The key observation is the following
lemma:

Lemma 5.2.3. UCK ' lim←−i lim−→v
Gm(p)v(

CK
miOK

CK
)

Proof. See [Ntls10] L10, Example 2.2

So, to put all together the maps given by duality, we de�ne G(D) as lim←−i lim−→v
Gv(

D
miRD

). We get a

map T (G′)×G(D)→ Gm(p)(D) ' U and hence a map G(D)→ Hom(T (G′), U). Observe that we have
an exact sequence 0 → µp∞ → U → CK → 0, where the last map is the logarithm. This gives us an
exact sequence 0→ Hom(T (G′), µp∞)→ Hom(T (G′), U)→ Hom(T (G′),CK)→ 0. We want to extend
this sequences to any G.
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Lemma 5.2.4. • G0(D) ' Homcont(A, D) ' m
Dim(G)
D

• Gét(D) = lim−→v
Gét

v ( D
mOK

) and hence it is torsion.

• The sequences 0→ G0(D)→ G(D)→ Gét(D)→ 0 is exact.

• G(OCK )tors = Φ(G)

Proof. See [SC86] Chapter 3,6

Thanks to the �rst point of the lemma we can de�ne a functorial continuous homomorphism log :
G0(D) → tG(Frac(D)) and we recall that it is a local isomorphism in a neighborhood of the identity,
see A.4.2. Using the second point we can extend the extend the map to the whole G(D), since for every
x we can chose an n such that pnx ∈ G0(D) and then de�ne log(x) = log(pnx).

Lemma 5.2.5. We have an exact sequence 0 → Φ(G) → G(OCK ) → tG(CK) → 0 and log(G(OK))
spans tG(K) as Qp vector space.

Proof. Recall that the torsion of G(OCK ) is equal to Φ(G) and it is contained in the kernel of log, since
tG(CK) is torsion free. Moreover if x is in the kernel then log(pnx) = 0 for some n. But log is an
isomorphism in a neighborhood of the identity, so, up to choosing n big enough, log(pnx) = 0 implies
pnx = 0 i.e x is torsion.
For the surjectivity observe that the image of the logarithm restricted to some some open U is an open
subgroup containing the identity of tG(CK) so that log(OCK ) contains an open subgroup containing the
identity. But then, for every x ∈ tG(CK), using A.4.1, there exists n such that pnx ∈ log(OCK ) i.e the
cocker of the log is torsion so that log(OCK )⊗Qp = tG(CK). Observe that this reasoning applied with
OK give us the last statement. To conclude it is enough to show that G(OCK ) is divisible since this
implies that log(OCK )⊗Qp ' log(OCK ).
To show this, thanks to the previous lemma, it enough to work with G0(OCK ) and Gét(OCK ). For the
�rst observe that this is true thanks to the fact that the multiplication by p in the formal group is �nite
and faithful �at and the isomorphism G0(OCK ) ' Homcont(A,OCK ). For the second we observe that
this is clear since Gét(OCK ) = (

Qp
Zp )n for some n (thanks to Hensel lemma and the fact that the residue

�eld is algebraically closed).

Putting all together we get the following commutative diagram with exact rows and ΓK invariant
vertical maps:

0 Φ(G) G(D) tG(CK) 0

0 Hom(T (G′), µp∞) Hom(T (G′), U) Hom(T (G′),CK) 0

α0 α dα

Remark. α0 is bijective, thanks to the duality at the beginning of the section. As a consequence ker(α) '
ker(dα) and hence ker(α) is a Qp vector space.

Proposition 5.2.6. a
1) α and dα are injective
2) αOK : G(OK)→ HomΓk(T (G′), UCK ) and dαOK : HomΓk(T (G′),CK) are bijective.

Proof. 1. • It is enough to show that α is injective when restricted to G(OK).
Indeed, if we know this we also know, by the previous remark, that it is injective on log(G(R)),
that spans tG(K) as Qp vector space thanks to 5.2.5. But then we can factorize dα in the
following way: tG(CK) ' tG(K) ⊗ CK → HomΓK (T (G′),CK) ⊗ CK → Hom(T (G′),CK) so
what want follows from the following:

Claim For every CK vector space with a semi linear action of ΓK the map WΓK ⊗ CK →W
is injective.

34



Proof. Suppose that ei ∈WΓK are linearly independent and take the shortest relation∑
aiei = 0 in W with a1 = 1. Then, since ei is invariant, we get for every σ ∈ Γk∑

(σ(ai)− ai)ei = 0

Since a1 = 1, we get σ(a1) = a1 and hence a shorter relation. As a consequence, σ(ai) = ai
for every i and hence, using A.4.6, ai ∈ K, a contradiction.

• Ker(α) ∩G(OK) is a vector space.
For this it enough to show that G(OCK )ΓK = G(OK), since taking invariants in left exact and
send vector spaces to vector spaces. Taking invariant of the exact sequence 0→ G0(OCK )→
G(OCK )→ Gét(OCK )→ 0, we get get a commutative diagram with exact rows:

0 G0(OK) G(OK) Gét(OK) 0

0 G0(OCK )ΓK G(OCK )ΓK Gét(OCK )ΓK

Now the last vertical map is an isomorphism and also the second thanks to the fact that

G0(OK) = mnOK = (mnCCK )ΓK = G0(OCK )ΓK

using again A.4.6 and 5.2.4. The snake lemma gives us the result.

• Now we show that it is injective onG(OK). We just need to show thatG0(OK)∩ker(αOK ) = 0.
Indeed, if we know this we are done since ker(α)∩OK is torsion free (is a Qp vector space) e
Gét(OK) is torsion thanks to 5.2.4. Now observe that we have a commutative diagram with
injective vertical maps:

G0(OK) Hom(T ((G0)′),CK)

G(OK) Hom(T (G′),CK)

α0

α

So we see that G0(OK) ∩ ker(αOK ) = G0(OK) ∩ ker(α0). So we can assume that G is
connected and we have to show that ker(α) ∩ G(OK) is zero. ker(α) is a vector space and
hence it is divisible. But G(OK) = mnOK and, since the valuation on OK is discrete, all the
divisible submodules of mnOK are trivial.

2. • We know that the map are injective by the previous point. First we show that it is enough
to prove that coker(dαOK ) = 0. In fact, by left exactness of the �xed point functor, we have
coker(dαOK ) ⊆ coker(dα)ΓK and coker(αOK ) ⊆ coker(α)ΓK .
Moreover coker(α)ΓK ' coker(dα)ΓK , so that coker(αOK ) ⊆ coker(dαOK ) and so the claim
follows.

• Since cocker(dαOK ) is a K vector space, it is enough to show that

Dim(HomΓK (T (G′),CK) = Dim(G)

By injectivity of dαOK and duality we have

Dim(HomΓK (T (G′),CK) ≥ Dim(G) and Dim(HomΓK (T (G),CK) ≥ Dim(G′)

To conclude the proof it is enough to prove the following two facts.

� Dim(HomΓK (T (G),CK) +Dim(HomΓK (T (G′),CK) ≤ h
Observe that, by the duality explained at the beginning of the section, we have

Hom(T (G′),Zp)(−1) = Hom(T (G′),Zp(1)) = T (G)

. Tensoring with CK and Zp(1) we get

Hom(T (G′),CK) = T (G)⊗ CK(1) = Hom(Hom(T (G),CK),CK(1))
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. So we have a ΓK invariant perfect paring

Hom(T (G′),CK)×Hom(T (G),CK)→ CK(1)

Taking �xed points we get that HomΓK (T (G),CK) and HomΓK (T (G),CK) are orthog-
onal to each other, using A.4.6, and hence that

HomΓK (T (G),CK)⊗ CK HomΓK (T (G′),CK)⊗ CK

are orthogonal to each other. Thanks to claim done in the proof before, we have that
are subspace of Hom(T (G),CK) and Hom(T (G′),CK) and so, by non degeneracy of the
pairing

Dim(HomΓK (T (G′),CK)) +Dim(HomΓK (T (G),CK)) =

Dim(HomΓK (T (G′),CK)⊗ CK) +Dim(HomΓK (T (G),CK)⊗ CK) ≤

≤ DimHom(T (G),CK) = h

� Dim(G)+Dim(G′) = h Since all the number in play are stable by passing to the residue
�eld and base extension, we can assume that G is de�ned over an algebraically closed
�eld of characteristic p. We have the following commutative diagram of fppf sheaves with
exact rows, where F is the Frobenius and V is the dual of the Frobenius, see A.1.23:

0 Ker(F ) G G(p) 0

0 0 G G 0

F

p V

id

The snake lemma give us an exact sequence 0 → Ker(F ) → Ker(p) → Ker(V ) → 0.
Observe that Ker(p) = G1 and hence has order ph. Ker(V ) is the dual of the cocker of
the frobenius G′1 → (G

(p)
1 )′. But this has the same order of the kernel of this map and so

we are done if we show that the kernel of the frobenius has order pdim(G). We conclude
observing that the frobenius is a �nite map of rank pdim(G).

Proof. of 5.2.1 We have shown that there is a pairing such that Hom(T (G),CK) and Hom(T (G′),CK)
are orthogonal to each other. Hence we have an exact sequence 0 → tG′(CK) → Hom(T (G),CK) =
Hom(Hom(T (G′),CK),CK(1)) → Hom(tG(CK),CK(1)) By a dimension counting we get that the last
map is surjective, and hence we have what we want using A.4.6.

5.2.2 Orthogonality theorem

Let K be a p-adic �eld. We start with a semiabelian variety A, with connected component A0,
over R = OK with reduction 0 → C → A0

k → B → 0, dimension g, toric part C of dimension t and
abelian part B of dimension a, so that g = a + t. Then we have that for every N , thanks to the snake
lemma and the fact that the multiplication by N is surjective on the toric part, an exact sequence
0 → C[N ] → A0

k[N ] → B[N ] → 0, so that A0
k[N ] is �nite of rank N t+2a. Now A[N ] is �at and quasi

�nite, so that we can write A[N ] = A[N ]f
∐
A[N ]η, with the �rst term �nite group scheme with special

�ber Ak[N ]. Now the sequence of (open and closed) subgroups C[N ] ⊆ A0
k[N ]f ⊆ Ak[N ] over k lift to

a sequence of �nite �at group scheme over R,thanks to A.4.4, A[N ]t ⊆ A[N ]0f ⊆ A[N ] over R. If we
put N = pn for n is varying, we get two p-divisible groups G = {A[p∞]t} and H = {A[p∞]0f}. Taking
generic �ber, we get two p-sub divisible groups of Tl(A), Tl(A)t and Tl(A)f . Observe that the rank of
the �rst one is t, while the rank of the second one is 2a+ t and that, since it is true on the special �ber,
the �rst one has étale Cartier dual. If G is a p-divisible group, in this section we will denote with D(G)
the Cartier dual of it. Recall that we want to show that Tl(A)/Tl(A)f is unrami�ed as Γk representation
so that it is enough to show Tl(A)/Tl(A)f ' D(Tl(A

′)t), since étale representation of local �elds are
unrami�ed (all the étale group schemes become constant after a �nite unrami�ed extension). To prove
this we have just to show, thanks to some rank consideration (Tl(A) has rank 2g) that Tl(A)f and Tl(A′)t
annihilate each other under the Weil pairing. To prove this it is enough to prove that every map between
T(A)f and D(Tl(A

′)t) is zero. We do �rst some reductions and we start to show that it enough to prove
that HomR(H,D(G)) = 0.
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Lemma 5.2.7 (Main theorem of Tate on p-divisible group [Tat67]). For every p-divisible group G,H,
the natural map HomR(G,H)→ Hom(GK , HK) is bijective.

Proof. It is clearly injective and to prove that is it surjective we take a map f : GK → HK . Consider
p-divisible group graph T (f) ⊆ T (GK)× T (HK) and observe that it is a Zp direct summand, since the
quotient injects in T (HK) via the map (x, y) 7→ y− f(x) and Zp is P.I.D.. We claim that there exists a
p-divisible group E ⊆ G×H over R such that T (EK) ' T (f). If we can prove this we are done. In fact
the natural map E → H is an isomorphism in the generic �ber and hence an isomorphism (it is enough
to check that E and H have the same discriminant but thanks to 5.1.4 and 5.2.6 this is determined by
the generic �ber) and then the composition of the inverse of this map with the natural map G→ E does
the work.
So we have just to prove the claim. Since it is a direct summand, T (f) correspond to a sub p-divisible
group E∗ of the generic �ber and hence to a family of subgroup E∗v . Then we can take Ev the closure of
E∗v in Gv ×Hv and we get a family {Ev → Ev+1}. Thanks to the claim in 5.1.3 for some w big enough
Ew+v

Ew
form p-divisible group over R and they do the job.

Now we pass from R to the residue �eld k thanks to the following

Lemma 5.2.8. For every p-divisible group G,H, the natural map HomR(G,H) → Homk(Gk, Hk) is
injective.

Proof. We start with a map such that f ⊗ k = 0 and we want to show that f is equal to zero. By
induction we will show that f ⊗ R

mn = 0, this is enough since this shows that for every n and every v the
augmentation ideal, the kernel of the zero section O(H) → K is contained in ker(f∗v ) + mn and hence,
thanks to Krull intersection, in Ker(fv). So we have to show that if f ⊗ R

mn = 0 then f ⊗ R
mn+1 = 0.

This is equivalent to show that if f ⊗ R
mn+1 /m

n = 0 then f ⊗ R
mn+1 = 0 so that we have to show that if

I is an ideal of some complete local ring R killed by m and f mod I = 0 then f = 0. Moreover we can
prove that f ◦ [p] = 0 since [p] is surjective in the category of fppf sheaves.
If G and H are étale then it is enough to observe that, since we are working over a complete ring, that
taking special �ber is fully faithful. If G is connected then we go to formal groups, using A.1.25, and
f is a map R[[x1, ..., xn]] → R[[x1, ..., xn]] such that f(xi) has coe�cient in I (since f mod I = 0) and
zero constant term (since it must preserve the unit section). Then we have [p] ◦ f(xi) = [p]hwhere h
has coe�cient in I and no constant term so that it is zero since it pI = 0, I2 = 0 and [p]h looks like∑
i paixi + g where ai ∈ I and g as coe�cient in I2.

So, using connected étale sequence, we are reduced in the situation when G is étale , and hence, up to a
�nite base change, we can assume G = Qp/Zp, and H is connected. But then at every �nite level v this
is a map Z

pvZ → Hn i.e. a family of element in Hn(Rn) and Hn = Spec(R[[x1, ..., xn]][pv](x1, ..., xn)).
The map is zero mod I, so this elements go to zero in Hn(R/I), so that the map is zero since every of
this element is killed by p (pI = 0).

Now we are almost done. Observe that the special �ber of G it T [p∞] and that the special �ber of H is
A0
k[p∞] so we are reduced to prove, thanks two the previous two lemmas, thatHom(A0

k[p∞], D(T [p∞])) =
0. It is enough to prove that Hom(T [p∞]), D(T [p∞])) = 0 and Hom(B[p∞], D(T [p∞])) = 0. Up to a
�nite base change we can assume T split and then T = Gm, so the statements become Hom(µp∞ ,

Qp
Zp ) = 0

and Hom(B[p∞],
Qp
Zp ) = 0. Hom(µp∞ ,

Qp
Zp ) = 0 is clear, since the �rst in connected and the second

constant. For the second we can't give a complete proof but we make some observation. If we take the
same statement with changing p with some prime l di�erent from the characteristic of the �eld, then the
statement Hom(B[l∞], QlZl ) = 0 is an easy consequence of A.4.8. Indeed, everything is étale and so we
can pass to the associated Γk modules and we have to show that Hom(Tl(B),Zl) = 0. But, thanks to
A.4.8, the eigenvalues of the frobenius acting on Tl(B) are di�erent from 1, while on the second all the
eigenvalues are 1. This implies that there are no equivariant maps between them. When l = p, exactly
the same reasoning works changing the notion of Γk modules with the notion of Dieudonné modules and
étale cohomology with crystalline cohomology..

5.3 Conclusion of the proof: Faltings height is an height

In this section we will give a sketch of the proof of the following theorem:
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Theorem 5.3.1. For every integer g ≥ 1 and even integer r ≥ 2 there exists a constant C(g, r), that
depends only on g and r such that the following holds.
Let A an abelian variety of dimension g de�ned over Q equipped with a principal polarization de�ned by
some symmetric ample line bundle L. Then

|d(A,Lr
2

)− 1

2
hF (A)| ≤ C(g, r)log((max(d(A,Lr

2

), 1) + 2)

This is enough to prove the Tate conjecture. Indeed we take an abelian variety over a number �eld
K and to prove the conjecture we can enlarge our ground �eld with a �nite extension and replace A
with an isogenous abelian variety, so that we can assume, thanks to 3.2.4 and 4.3.1, that A is principally
polarized by a symmetric line bundle and with semistable reduction. Recall the setting of 1.2.3 3). Fix a
sub l divisible group of G = {Gn} of A[l∞] over k such that Bn := { AGn } are all principal polarized by a
symmetric line bundle. We have to show that the Bn fall into �nitely many isomorphism classes. Then,
thanks to A.1.36, all the Bn have semistable reduction. Using A.1.16 we �nd a �nite extension F such
that a delta structure is de�ned over it. Using 5.1.1 and 5.3.1 they have bounded delta height so they
fall into �nitely many classes as polarized abelian variety over K, using A.3.2. So by 3.3.4 they are fall
into �nitely many isomorphism classes, as polarized abelian variety over F . Now just observe that, as in
the proof of 3.3.4, using A.1.17 and 3.3.3, this implies that they fall into �nitely many classes over K.

5.3.1 Comparison of heights

There are several ways to prove the comparison theorem or some of its possible variants. The common
point of all of them is the use of Arakelov geometry. The original approach of Faltings pass trough a
compacti�cation Ag of Ag, a coarse moduli space for principally polarized abelian varieties of dimension
g, and some computations in the boundary of Ag inside Ag. We will follow a di�erent pattern, more
elementary, following [Paz12]. We start giving the necessary de�nition from Arakelov geometry.

Arakelov Geometry

De�nition 5.3.2. A metrized vector bundle on OK is a pair (L, (| − |σ)σ:K→C), where L is a vector
bundle over OK and | − |σ is a norm on L⊗σ C.

De�nition 5.3.3. If L is a metrized line bundle we de�ne it's degree as

deg(L, (| − |σ)σ:K→C) = log
(∣∣∣ L

sOK

∣∣∣)−∑
σ

log||s||σ

where s is any non zero section of L.
If (L, (| − |σ)) is any metrized vector bundle we de�ne

Deg((L, (| − |σ))) = Deg(Det(L, (| − |σ)))

Remark. As in 5.1, one can show that the degree does not depend on the choice of s.

De�nition 5.3.4. If X is a projective variety over K. A metrized vector bundle on X is a pair
(L, (| − |p,σ)x∈X(Kσ),σ:K→C) where L is a vector bundle over X and | − |x,σ is a norm on each �ber
Lx ⊗σ C for every x ∈ X(Kσ) that satis�es the following continuity condition: For every open subset U
of X and every s ∈ H0(U,L) the map

U(Kσ)→ [0,+∞)

x 7→ |fx|x,σ
is continuous

Remark. Metrized vector bundle are stable for all the usual operation on vector bundle, like �nite direct
sums, tensor products, determinants, duals and pullback.

De�nition 5.3.5. If x ∈ X(OK) and L is a metrized vector bundle, we de�ne the degree of L at x as
Degx∗L and the height of L at x has hL(x) := 1

[K:Q]Degx
∗L

38



Example. The Faltings height of an Abelian variety A, de�ned in 5.1.2, can be seen as the degree of a
metrized line bundle. Indeed if π : A → OK is the Neron model of A with unit section ε , we can make
π∗Ω

g
A/OK a metrized line bundle observing that

(π∗Ω
g
A/OK )⊗σ C = H0(Aσ(C),ΩgAσ )

and de�ning a norm on this space by

|α|σ =

∫
Aσ(C)

α ∧ α

Then we get hF (A) = 1
[K:Q]Deg(π∗Ω

g
A/OK , (| − |σ))

Example. Also the usual height on the projective space can be recovered as the degree of a metrized line
bundle of Pn. Indeed we can make O(1) a metrized line bundle setting for every f ∈ H0(PnKσ ,O(1)) and
every P ∈ Pn(Kσ):

|fP |σ,P = min0≤i≤n,xi(p)6=0(| f
xi

(P )|σ)

where the xi are the canonical generators of OPn(1). Then one has h(P ) = 1
[K:Q]DegP

∗L for every
P ∈ Pn(OK).

Finally we recall an important invariant associated to an ample line bundle L over A. The choice
of a basis of global sections induces a map f : A → PnK and an isomorphism f∗OPn(1) ' L. With this
isomorphism L becomes a metrized line bundle and hence give as a function hL : A(K)→ R.

Theorem 5.3.6. There is a unique quadratic function

h̃L : A(K)→ R

such that h̃L = hL +O(1) and h̃L(0) = 0 and does not depend on the choice of the basis.

Proof. [BG06] Theorem 9.2.8

De�nition 5.3.7. The Neron Tate height associated to L is the unique function h̃L : A(K)→ R in the
previous theorem.

Comparison

Let A be a g-dimensional principally polarized abelian variety de�ned over K whose polarization is
induced by a symmetric ample line bundle. Let r be an even positive integer. We will assume that all
the r2 torsion points of A are rational enlarging our base �eld if needed. Observing that K(Lr

2

) = A[r2],
choose a delta structure over K and a rigidi�cation of L at the origin, i.e. an isomorphism between the
�ber of L in 0 and K. We note that a delta structure determines a family of isomorphisms ix : t∗xL

r2 →
Lr

2

for x ∈ A[r2], and the choice of the rigidi�cation determines an isomorphism j : [r]∗L → Lr
2

. For
any x ∈ A[r2] de�ne

ψx : H0(A,L)→ H0(A,Lr
2

)

s 7→ ix ◦ t∗x ◦ j ◦ [r]∗(s)

and
ψ : ⊕

x∈A[r2]
A[r]

H0(A,L)→ H0(A,Lr
2

)

s 7→
∑

x∈A[r2]
A[r]

ψx(s)

an observe that is a non zero map, such that the image is an equivariant subspace of H0(A,Lr
2

) under
the action of G(Lr

2

). By 4.1.4 and counting dimension this map is an isomorphism. We will study the
height of A with respect to a delta structure on Lr

2

and we will denote it with d(A,Lr
2

).
The key input comes from the existence of the so called M.B. model (B,Lr2 , (εx)x∈A[r2]) over a �nite

extension N of K, of A, where B is a quasi projective group scheme π : B → Spec(OK) over OK , Lr
2

is
a metrized line bundle over B and, for every x ∈ A[r2], εx is a section Spec(ON ) → B. The tree main
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properties of B that will allow us to get the comparison are the following. First of all, the Faltings height
of A is related to the degree of the metrized vector bundle π∗Lr

2

, with the following equality:

degπ∗Lr
2

[N : Q]
= −1

2
hF (A)− g

4
log(2π)

Secondly, there exists an isomorphism i : AK → BK such that the geometric point associated to εx
corresponds to x ∈ A[r2](K), for every x ∈ A[r2].
Finally, the degree of the line bundle is related to the Neron-Tate height h̃L in the following way:

Deg(ε∗xLr
2

)

[N : Q]
= h̃L(x)

For details, see [Paz12] De�nition 3.1 and Theorem 3.4. With this B.M. model and the language of
Arakelov geometry, one can compare the di�erent heights. In particular, we observe that for x = 0,
Deg(ε∗xL

r2 )
[N :Q] = 0. Denote with F the metrized line bundle π∗L2g over ON . The construction of Pazuki,

is based on the fact that, using the existence of a lifting of the isomorphism ψ : ⊕
x∈A[r2]

A[r]

H0(A,L) →

H0(A,Lr
2

) to an injection F ⊆ π∗Lr
2

, one can construct a map iN : BN → Pr
2g−1
N with the following

two proprieties:
1)When base changed to the algebraically closure (an composed with the isomorphism i) is the delta
embedding.
2)The heights satis�es the following equality:

h(iN (x)) = hF (iN (x))− 1

[N : Q]
Degπ∗Lr

2g

where hF is the height on P(FN ) ' Pr
2g−1
N attached to the metrized line bundle associated to OF (1)

For details see [DDSMS99] pages 14-16-17, we just observe that the last equality can be deduced from an
isomorphism between two metrized line bundles, OF (1) ' π∗π∗L⊗OPr2g−1(1), and this partially explain
the power of a uniform language to deal with di�erent heights.
By the properties of B.M. model explained before, we get for every x,

h(iN (x)) = hF (iN (x)) +
1

2
hF (A) +

g

4
log(2π)

In particular, by the property 1 and the above formula applied to x = 0, we get that

d(A,Lr
2

) = hF (iN (0)) +
1

2
hF (A) +

g

4
log(2π)

and so that to obtain the comparison one has just to bound hF (iN (0)). To deal with this, the idea is
to use the inclusion F ⊆ π∗Lr

2

to compare the degree of the two vector bundles and then use the fact

that Deg(ε∗xL
r2 )

[N :Q] = h̃L(x) and that this is zero when applied to x = 0. The inclusion F ⊆ π∗Lr
2

induces,

by adjuction, a map π∗F → Lr2 . One can show that the image of this map is in the form IBFLr
2

for
some sheaf of ideals IBF over B and we denote BF the closed subscheme de�ned by IBF . Using [Paz12]
Theorem 3.4, we get that BF has empty generic �ber and hence that ε∗BF is a divisor that we will write
ε∗BF =

∑
v βv(Lr

2

,F)pv. We will also consider their Archimedean counterparts, de�ned as

βσ(Lr
2

,F) :=
1

2
log
( ∑

1≤i≤n

|ui|2σ(0)
)

where ui is any orthonormal basis of Fσ, a subspace of H0(Bσ,Lr
2

σ ). Then one can show the following:

Lemma 5.3.8.

hF (iN (0)) = − 1

[N : Q]

(∑
v

βv(Lr
2

,F)log(N(pv)) +
∑
σ

βσ(Lr
2

,F)
)

Proof. See [Paz12] Proposition 4.1.
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So we found:

d(A,Lr
2

)− 1

2
hF (A) = − 1

[N : Q]

(∑
v

βv(Lr
2

,F)log(N(pv)) +
∑
σ

βσ(Lr
2

,F)
)

+
g

4
log(2π)

The next two propositions conclude the proof.

Lemma 5.3.9.
1

[N : Q]

(∑
v

βv(L
r2 ,F)log(N(pv))

)
≤ g

2
r2glog(r)

Proof. See [Paz12] Lemma 5.3.

Lemma 5.3.10. ∣∣ 1

[N : Q]

∑
σ

βσ(Lr
2

,F)
∣∣ ≤ C(g, r)log((max(d(A,Lr

2

), 1) + 2)

for some positive constant C1(g, r).

Proof. See [Paz12] Lemma 5.4, Proposition 5.5, Remark 1.2.
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Appendix A

Collection of facts

A.1 Generalities on Tate modules and abelian varieties

A.1.1 General theorems

Proposition A.1.1. Every abelian variety of dimension g over the complex number is isomorphic to
Cg
Λ for some lattice Λ of rank g. Every isogeny between abelian variety f : Cg

ΛA
→ Cg

ΛB
is induced by an

inclusion ΛA → ΛB with �nite cokernel of deg(f).

Proof. See [SC86] Chapter 4.1

Proposition A.1.2. Every abelian variety over a �eld is isogenous to a product of powers of pairwise
not isogenous simple abelian varieties.

Proof. See [MVdG13] Corollary 12.5.

Proposition A.1.3. For every abelian varieties A of dimension g over a �eld k, the map Deg : End(A)⊗
Q→ Q is a homogeneous polynomial function of degree 2g.

Proof. See [MVdG13] Proposition 12.15

Proposition A.1.4. For every abelian varieties A over a �eld k and every α ∈ End(A) there exists a
unique monic polynomial Pα ∈ Z[x] of degree 2g such that Pα(r) = deg(α − r) for all r ∈ Z. The same
is true if we change End(A) with End(A)⊗Q and Z with Q.
Moreover Pα is the characteristic polynomial of Vl(α) acting on Vl(A) when l 6= char(k).

Proof. See [Mil08] Theorem 10.9, Proposition 10.13 and Proposition 10.20.

De�nition A.1.5. Pic0(A) : V ark → Ab is de�ned by the rule

Pic0(A)(T ) =

{
L ∈ Pic(A× T ) such that L|A×{t} is invariant by translation

and L|{0}×A is trivial

}
Proposition A.1.6. 1)The functor Pic0(A) is representable by an abelian variety A′.

2) Pic0(A′)(T ) = Pic(A×T )
π∗T (Pic(T ))

3)A′′ = A

Proof. See [MVdG13] Chapter 6 and 7.

De�nition A.1.7. The Poincaré bundle PA of A is the universal line bundle on A×A′

Proposition A.1.8. (PA){t}×A′ is trivial if and only if t = 0.
It satis�es (m,n)∗PA = PmnA .
A line bundle L over A de�nes a morphism ψL : A→ A′ such that (ψL×id)∗PA = m∗L⊗p∗L−1⊗q∗L−1.
K(L) is the kernel of this morphism and it is the set of point of A such that t∗xL = L.
If L ∈ Pic0(A), [n]∗L = Ln, ψL = 0.
If L is ample ψL is an isogeny.

Proof. See [MVdG13] Chapter 6 and 7.
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Proposition A.1.9. [n] : A→ A is an isogeny and it is étale if and only if char(k) 6 |n.

Proof. See [Mil08] Theorem 7.2.

Proposition A.1.10. If f : A→ B is an isogeny we have a perfect pairing ef : ker(f)×ker(f ′)→ Gm.
This pairing satis�es the usual property of the pairing.

Proof. We will prove it in chapter 2 section 1. For more details see [MVdG13] Chapter 7.

Remark. Observe that if f is a polarization then the pairing is in the following form:

ker(f)× ker(f)→ Gm

.

De�nition A.1.11. We will denote with eA the perfect pairing associated to f = [n] : A → A, it is a
perfect paring A[n]×A′[n]→ Gm. It is called the Weil pairing.
If λ is a polarization we get a paring A[n] × A[n] → µn composing the previous paring with the map
id× λ. It is called the Weil pairing associated to λ and it is denoted with eλA

De�nition A.1.12. A line bundle is said non degenerate if K(L) is �nite.
An isogeny f : A → A′ is said a polarization if, in a �nite extension K, is in the form ψL for some
L ∈ Pic(AK). We say that f in principal if it is an isomorphism.

Proposition A.1.13. If char(k) 6 |n then A[n](k) ' ( Z
nZ )2g.

Proof. This follows from 2.0.1 and the fact that if L is an ample symmetric line bundle [n]∗L = Ln
2

.

Proposition A.1.14. If A is an abelian variety over a noetherian henselian local domain S, then the
functor End(A|S) is representable by a �nite unrami�ed group scheme.

Proof. See [MVdG13] Proposition 7.14 for �elds, the same proof works over henselian local domain.

Proposition A.1.15. If p : G→ S is a group scheme with unit section ε, then Ω1
G/S ' p

∗e∗Ω1
G/S. If G

is smooth and S is a local ring Ω1
G/S is free of dimension G

Proof. See [BWR90] Proposition 2 Pag. 102

Proposition A.1.16. [Zar74] Let A be an Abelian variety over a �eld K, and let m be a natural number
not divisible by the characteristic of the �eld. There exists a �nite separable extension L such that if B
is an abelian varieties isogenous to A, then all the m torsion points of B are L rationals.

Proof. It is enough to deal with d = ln for some prime l di�erent with the characteristic of the �eld.
Then consider G = Im(ρ) where ρ : ΓK → GL2g(Tl(A)). Up to replace k with a �nite extension we can
assume that G ⊆ 1 + lMl(Zl). Then it is a pro-l compact l-adic Lie group thanks to Cartan's Theorem.
Observe that K(B[ln]) ⊆ K(A[l∞]) and its degree over K is bounded by some constant C that depends
only on g, l, n. Consider the intersection of the kernels of all the maps from G to �nite groups with order
less or equal to C. By [DDSMS99], Corollary 1.21, it is an open subgroup U . The extension associated
to ρ−1(U) is the required extension.

Proposition A.1.17. Let (A,L) be a polarized abelian variety over a �eld k and K a Galois extension
of k. The the set of isomorphism classes of polarized abelian varieties over k that are isomorphic to A
over K is in bijection with H1(Gal(K|k), Aut(AK , LK)).

Proof. See [Ser97a] Proposition 5, Page 131 for the proof for general quasi projective varieties. The proof
show that everything works in same way adding the dependence from a polarization.
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A.1.2 Tate module, Neron model and good reduction

De�nition A.1.18. We say that a sequence of group scheme 0→ H → G→ F → 0 is exact if the �rst
map is a closed immersion and the second identi�es F with the categorical quotient of G and H.

We recall the following theorems.

Theorem A.1.19. 1)There is an equivalence of categories between étale �nite group scheme over a �eld
k and Γk discrete modules.
2)If k is of characteristic zero, then every �nite group scheme is étale .
3) There exists two exact endofunctor (−)0 and (−)ét in the categories of group scheme over k such that
every �nite group scheme G �ts in an exact sequence

0→ G0 → G→ Gét → 0

and Gét is étale and G0 is connected.
4)The last point is true if we change k with a complete noetherian local ring and we assume G �at.

Proof. 1) is [Pin04],Theorem 12.2, 2) is [Pin04], Theorem 13.2, 3 is [Pin04] Proposition 15.3, 4 is [Ntls10]
L06 Theorem 16.

De�nition A.1.20. Let R be a ring. A p divisible group over R of height h is a collection {Gn, in :
Gn → Gn+1}n∈N such that Gn is a �nite �at group scheme of rank pnh and the sequence

0→ Gn
in→ Gn+1

p

→ Gn+1

is exact

Theorem A.1.21. 1) There exists an equivalence of categories étale p-divisible group over a �eld k and
Γk discrete Zp modules.
2)If we consider lim−→i

Gi as a fppf sheaf, then the multiplication by p is surjective and this give us an
embedding of the category of p divisible in the category of fppf sheaves.
3)There exists two exact endofunctor (−)0 and (−)ét in the categories of p divisible group over k such
that every p divisible group G �ts in an exact sequence

0→ G0 → G→ Gét → 0

and Gét is étale and G0 is connected
4)The previous point remains true if we change k with a complete local ring.
5)The multiplication by pm induces an exact sequence

0→ Gv
i→ Gv+w

pv→ Gw → 0

where i is the composition of the necessary ij.

Proof. See [SC86] Chapter 3.6

Example. 1)Gm(p)v := µpv

2)A[p∞]v := A[pv], if A is an abelian variety.
3)QlZl v = Z

lZ

De�nition A.1.22. If G is p-divisible group over a domain with fraction �eld G, we de�ne

Tp(G) := lim←−
v

Gv(K) Φ(G) := lim−→Gv(K)

where the limit is taken �rst with respect to the projection and then to the inclusion. Moreover we de�ne
Vp(G) = Tp(A)⊗Qp
If A is an abelian variety we de�ne Tp(A) := Tp(A[p∞]) and Vp(A) in the same way.

Example. If A is an abelian variety of dimension g and l is di�erent from the characteristic of the �eld,
then Tl(A) is a free module Zl of rank 2g.
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Proposition A.1.23. If G is a p-divisible group or a �nite group of order a power of p over a �eld of
characteristic p we have a morphism induced by the Frobenius F : G(p) → G and a morphism induced by
the dual of Frobenius V : G→ G(p) such that V ◦ F = [p] = F ◦ V .
If G is p divisible then V and F are epimorphisms in category of fppf sheaves.

Proof. See [Pin04] Chapter 14 and 15 for the statements about group schemes. The proofs are similar for
p-divisible groups. The last statement follows from [MVdG13] 10.13. and [Pin04] Proposition 15.6

De�nition A.1.24. Let R be a noetherian complete local ring with residue �eld k of characteristic
p > 0. Let B = R[[x1, ..., xn]] and e : B → R the map that send each xi in 0. A formal group over R
of dimension n is a map B → B⊗̃RB, where the latter is the completed tensor product, such that m is
coassociative and cocommutative with e as a counit.
A formal group is said divisible if the multiplication by p is �nite free. We will denote with I the ideal
(x1, .., xn).

Theorem A.1.25. The functor that send a divisible formal group B to the connected p-divisible group
{ B

([pv]∗A)}v∈N gives an equivalence of categories between the category of divisible formal groups and the

category of connected p-divisible group.

Proof. See [Ntls10] L9, Page 10.

De�nition A.1.26. If G is p-divisible group over a complete noetherian domain we de�ne the tangent
space to G, tG, as the tangent space of the formal group B associated to the generic �ber of G0 and
Dim(G) = Dim(tG)

De�nition A.1.27. Let R be a domain with fraction �eld K and A an abelian variety over K. A Neron
model A for A is a smooth, commutative, separated and quasi projective group scheme with generic �ber
A and such that Hom(X,A) = Hom(XK , A) for every smooth separated scheme X over R.

Observe that if it exists it is unique up to a canonical isomorphism.

Theorem A.1.28. If R is a Dedekind domain, with fraction �eld K and A is an abelian variety over
K there exist the Neron model of A over R.

Proof. See [BWR90] Theorem 3 Pag 19.

De�nition A.1.29. Let R be a domain. A commutative smooth connected separated quasi projective
group scheme G over R is a semiabelian variety if there exists an exact sequence of group scheme

0→ T → G→ A→ 0

where T is a torus and A is an abelian variety.

De�nition A.1.30. Let R be a domain with fraction �eld K and A an abelian variety over K. We
say that A has good reduction at same place v of R if the base change of the connected component of
the Neron model of A at that place is an abelian variety. We say that A has semistable reduction at
same place v of R if the base change of the connected component Neron model of A at that place is a
semiabelian variety.

Proposition A.1.31. Let R be a domain with fraction �eld K and A an abelian variety over K. Then
it has good reduction outside �nitely many places.

Proof. See [BWR90] Theorem 3, Page 19.

Theorem A.1.32. Let R be a complete discrete valuation ring with fraction �eld K and A an abelian
variety over K. Then there exists a �nite extension L of K such that A acquires semistable reduction.

Proof. See [BWR90] Theorem 1 Pag. 181.

Corollary A.1.33. Let R be a Dedekind domain with fraction �eld K and A an abelian variety over
K. Then there exists a �nite extension L of K such that A acquires semistable reduction at every place.

Corollary A.1.34. Let R be a Dedekind domain with fraction �eld K and A an abelian variety over K
with semistable reduction. Then the connected component of the Neron model is stable by base change

Proof. See [BWR90] Corollary 4 Pag 183.
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Proposition A.1.35. Let R be a complete discrete valuation ring with fraction �eld K and A an abelian
variety over K. Then A has good reduction if and only if the representation on Tl(A) is unrami�ed.

Proof. See [ST68] Theorem 1

Proposition A.1.36 (Unipotent). Let R be a complete discrete valuation ring with fraction �eld K and
A an abelian variety over K. Then A has semistable reduction if and only if the action of the inertia on
Tl(A) is unipotent.

Proof. See [BWR90] Theorem 5 Pag 183.

A.2 Some non commutative algebra

Theorem A.2.1. Let R be a k algebra and E = Endk(V ) for some faithful semisimple R module V .
Then CentrE(CentrE(R)) = R

Proof. See [Jac09] Thm. 4.10

Theorem A.2.2. In a semisimple algebra every right ideal is generated by an idempotent

Proof. This is a classical result. The nicer proof is in [Ntls10] L20, Proposition 4.4.

Theorem A.2.3. If A is semisimple algebra over a �eld of k of characteristic zero, then A ⊗k k′ is
semisimple for every �eld extension k → k′.

Proof. See [Ntls10] Proposition 5.2.

Theorem A.2.4. Let R be any Dedekind domain whose quotient �eld is a global �eld. Then for each
R order Λ in a semisimple K algebra A, and for each positive integer t, there are only �nitely many
isomorphism classes of right Λ lattices of R rank at most t

Proof. See [Rei75] Theorem 26.4

Theorem A.2.5. Let A be a semisimple K algebra, where K is the quotient �eld of a noetherian
integrally closed domain R of characteristic zero.
1) Every R order is contained in a maximal R order in A. There exists at least one maximal R order in
A.
2)Let Λ be a maximal order in A. Then every right Λ lattice is projective.

Proof. See [Rei75] Corollary 10.4 and Corollary 21. 5

A.3 Some algebraic geometry

De�nition A.3.1. Let K be a global �eld, i.e a �nite extension of Q, where Q is Fp(T ) or Q}. Let ΩF
denotes the set of places of F , where F is any �nite extension of K and x = (x0 : ... : xn) ∈ Pn(K). We
de�ne the height of x as

h(x) =
1

[F : Q]

∑
v∈ΩF

log(max0≤i≤n(|xi|v))

where F is any �nite extension containing K(x1, ..., xn).

Remark. The height is well de�ned thanks to the product formula and the behavior of valuations over
�nite extension.

Proposition A.3.2. With the notation of the previous de�nition, for everyn,m ∈ N there exists only
�nitely many point in Pn(K) de�ned over an extension of degree smaller then n with heights smaller
then m.

Proof. See [SC86] Chapter 6.2 and [BG06] Example 9.4.20.
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Theorem A.3.3. [Grothendieck duality] If f : X → Y is a smooth morphism of dimension g between
noetherian scheme and F ∈ D(X),G ∈ D(Y ) then there is a natural isomorphism

HomD(X)(F, (f
∗(G)⊗ ωX/Y )[g]) ' HomD(Y )(Rf∗F,G)

.

Proof. See [Har63]

Theorem A.3.4. Let π : X → S be a proper morphism of noetherian scheme and let F be a coherent
OX module which is �at over OS. Then:

1. If for some integer i there is some integer d such that for all s ∈ S we have dimk(s)H
i(Xs,Fs) = d,

then Riπ∗F is locally free of rank d and (Ri−1π∗F)s ' Hi−1(Xs,Fs) for every s ∈ S

2. If for some integer i and some s ∈ S the map

(Riπ∗F)s → Hi(XsFs)

is surjective then
(Ri−1π∗F)s → Hi−1(Xs,Fs)

is surjective if and only if Riπ∗F is locally free in a neighborhood of s.

Proof. See [Har77] Section 12 and [Fa05] Theorem 5.12.

Theorem A.3.5. Suppose that X → Y is a proper math between smooth variety. Then for every line
bundle L over X we have χ(L) = Deg(ch1(L)Td(X))(n).

Proof. See [Ari10] Corollary 3.8 for the proof and the notation.

A.4 Some theory of complete local rings

Proposition A.4.1. Let G be a connected p-adic analytic group over some p-adic �eld K. Then for
every extension L on K and every x ∈ G(L), lim

n→+∞
pnx = 0.

Proof. See [Lie00]

Proposition A.4.2. Let G be a connected p-adic analytic group over some p-adic �eld K. Then for
every extension L on K there exists a functorial analytic homomorphism G(L) → tG(L) and it is an
isomorphism in a neighborhood of the identity.

Proof. See [Lie00]

Proposition A.4.3. If K is a number �eld there exists a �nite extension such that every ideal become
principal.

Proof. The integral closure Z of Z in Q is a Bézout domain. The class group ofK is �nite. If I ∈ Pic(OK)
then I becomes principal in Z. The generator is de�ned in a �nite extension. So I becomes principal in
a �nite extension. Now just repeat the process for every class in the class group.

Proposition A.4.4. Suppose that R is a complete noetherian local ring and G a quasi �nite scheme
over it. Then there exists a unique decomposition G = Gf

∐
Gη, where Gf is �nite and Gη has empty

special �ber. The formation of the �nite part is functorial and preserve products so that it sends group
scheme in group scheme.

Proof. This follows from the Zariski main theorem and the fact that every �nite group scheme of a
complete noetherian ring is disjoint union of local scheme.

De�nition A.4.5. Let K be a p-adic �eld and denote with CK the completion of the algebraic closure
of K. A representation V of ΓK is Hodge Tate if V ⊗CK ' ⊕iCK(i)ni . We say that a one dimensional
Hodge-Tate representation is of weight m if V ⊗ CK ' CK(m)
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Proposition A.4.6. Let K be a p-adic �eld, denote with CK the completion of the algebraic closure of
K and let V be a ΓK representation. Then:
1)H0(CK ,ΓK) = K.
2)H0(CK(i),ΓK) = 0 if i 6= 0.
3)H1(CK(i),ΓK) = 0 if i 6= 0.
4)The Hodge-Tate weight of a one dimensional representation is well de�ned.
5)If V is unrami�ed, then it is Hodge-Tate of weight 0.
6)If V is one dimensional and Hodge-Tate of weight 0, then the image of the inertia is �nite.
7)H1(CK(i),ΓK) is in bijection with the set of isomorphism classes of continuous exact sequences 0 →
CK(i)→W → CK → 0

Proof. All of this can be found in [CB09]

Proposition A.4.7. Let G be a group, H a subgroup of �nite index, K any subgroup and S = K\M/H.
Then for every representation V of H we have that

(IndHG (V ))|K = ⊕s∈SIndHsK (Ws)

where Hs = sHs−1 ∩K and Ws is the representation of Hs given by g ∗ x = s−1gs ∗ x

Proof. For the statement about �nite group see [Ser77] Chapter 7,3 Prop. 22.. The proof in this situation
is analogous.

Proposition A.4.8. Suppose that X is a smooth proper scheme over a �nite �eld K of cardinality q.
Then the eigenvalues of the Frobenius acting on Hi

ét
(A,Zl) have complex absolute value |q| i2 .

Proof. See [Del80].
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Appendix B

A proof of 4.3.2 without identi�cations

Theorem B.0.1. The map End(A)→ Tl(A) is surjective.

Proof. Recall the following commutative diagram:

kH
H
pS

H K

kS S

rS

π H
pS

πSH
jS

πH

iH

πS

iS

• Step 1. We have the following chain of inclusions:

ETl(rS)ETl(π
S
H)ETl(iH)−1(EndG(Tl(AK)))

(1)
= ETl(πS)ETl(iS)−1(EndG(Tl(Ak)))

(2)

⊆ EndGS (Tl(AkS ))
(3)

⊆ End(AkS )⊗ Zl
(4)
= EA(rS)(End(A H

pS

)⊗ Zl)
.
1) Is clear by the commutativity of the diagram.
2) Is clear since the action of GS on Tl(k) is compatible with the map πS and iS .
3) Here we use the induction hypothesis. We have the following commutative diagram:

R RqS HpS S K

Frac( RqS ) Frac( HpS ) S
mS

Observe that Frac( HpS ) is an algebraic extension of Frac( RqS ) and that S
mS

is the separable closure

of Frac( HpS ), so that it is also the separable closure of Frac( RqS ). Moreover the natural map

GS → Gal(Frac( RqS )) is surjective and hence the two actions on EndGS (Tl(AkS )) have the same

�xed point. But the transcendence degree of Frac( RqS ) is one less of the one of K, since qs is of
height one, so by induction we have that EndGS (Tl(AkS )) ⊆ End(AkS )⊗ Zl.
4)We have to show that EA(rS) is surjective and we start observing that rS is injective. As in the
previous proposition we get the following commutative diagram

End(A H
pS

| HpS )S End(A H
pS

| HpS )

Spec(kS) Spec( HpS )

An element in End(AkS ) is a map Spec(kS)→ End(A H
pS

| HpS ) and hence, as in the previous propo-

sition a map
H
pS

I → kS for some ideal I of H
pS
. But since rS is injective we get that I = 0 and hence

it comes from a section Spec( HpS )→ End(A H
pS

| HpS ).
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• Step 2. ETl(πH)ET−1
iH

(EndΓK (Tl(AK)) ⊆ ∩S∈M (Im(EA(π H
pS

))⊗ Zl)
From the previous point we get ETl(πSH)ETl(iH)−1(EndG(Tl(AK))) ⊆ End(A H

pS

) ⊗ Zl for every
S. Applying ETl(π H

pS

) we get, thanks to the commutativity of the diagram at the beginning of

the proof, ETl(πH)ETl(iH)−1(EndG(Tl(AK))) ⊆ ETl(π H
pS

)(End(A H
pS

)⊗Zl). But the last term is

included in Im(EA(π H
pS

)⊗ Zl) thanks to the following commutative diagram:

End(A H
pS

)⊗ Zl End(AkS )⊗ Zl

End(Tl(A H
pS

)) End(Tl(AkS ))

• Step 3. Conclusion of the proof.
Thanks to the previous point and the lemmas in chapter 3, we get

ETl(πH)ETl(iH)−1(EndΓK (Tl(AK)) ⊆ ∩S∈M (Im(EA(π H
pS

))⊗ Zl) =

= (∩S∈MIm(EA(π H
pS

)))⊗ Zl = ImEA(πH)⊗ Zl = EA(πH)(End(AH)⊗ Zl)

and hence that ETl(iH)−1(EndΓK (Tl(AK)) ⊆ End(AH)⊗ Zl. Applying ETl(iH) we get
EndΓK (Tl(AK) ⊆ End(Ak) ⊗ Zl so that EndΓK (Tl(AK)) = End(AK) ⊗ Zl ∩ EndΓK (Tl(AK)).
To conclude, just observe that End(AK) ⊗ Zl ∩ EndΓK (Tl(AK)) = End(AK) ⊗ Zl since the only
morphism that are �xed by the Galois are the one de�ned over K.
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Index of de�nitions and notations

Pic0, 42

Delta null coordinates, 22
Delta structure, 20
Dual abelian variety, 42

Faltings height, 30
Formal group, 45

Good reduction, 45

Height, 46

Metrized vector bundle, 38

Neron model, 45
Neron Tate height, 39

p-divisible group, 44
Poincaré Bundle, 42
Polarization, 43

Rosati involution, 17

Semi abelian variety, 45
Semistable reduction, 45

Tangent space of a p-divisible group, 45
Tate module, 44
Theta group, 16
Thin set, 28

Weil pairing, 43

Notations

In this thesis we have used the following convention:

• The letters k,K, F usually denote �elds and k,K,F their algebraic closures.

• We denote the absolute Galois group of a �eld k as Γk or as π1(k)

• More generally, we denote with π1(X) the étale fundamental group of a connected scheme, implicitly
assuming the choice of a base point.

• A,B usually are used for abelian varieties and L,M for line bundles over them.

• The polarizations are denoted with λ or with ψL when we want to emphasize that they come from
a line bundle L.

• PA denotes the Poincaré bundle of an abelian variety A.

• The projections A×A→ A are denote with p, q or with π1,π2.

• G usually denotes a group scheme, the multiplication is denoted with m and the unit section with
ε.

• The multiplication by n is denoted with [n] and its kernel G[n]
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